Выбрать главу

Таким образом, то, что называется понятием как совокупностью признаков, есть не просто отражение вещи, но известного рода переработка этого отражения. Метод бесконечно–малых мощно и отчетливо гласит, что эта переработка есть не что иное, как дифференцирование, или получение производной. Означенная переработка происходит здесь, как мы узнали выше, в переходе в становление, зависимое от становления вещи, и в переходе этой зависимости двух становлений к пределу.

Инфинитезимальная теория прекрасно рисует познавательную роль понятия, в то время как традиционная теория касается этого только в своем учении о происхождении понятия (априорном или чувственном), а происхождение ровно ничего не говорит на тему о логической и познавательной значимости и уже предполагает эту значимость известной (так, Кант учит вовсе не о том, что такое пространство, но о том, как и откуда оно происходит; а что такое само–то пространство, это уже ему известно до исследования). Инфинитезимальная же теория в нашем построении исследует в первую голову вопрос о познавательной и логической значимости понятия.

Понятие вещи есть отражение вещи. Однако это будет пустой и незначащей фразой, если мы четко не покажем конкретного строения самого понятия. Если понятие есть такое отражение, что оно есть абстрактная общность, не имеющая никакого отношения к индивидуальным вещам и к индивидуальным представлениям, то какое же это отражение? Это — пустая фраза, а не отражение. Если же понятие всерьез отражает вещь, то его общность должна сохранить в себе все бесконечное богатство индивидуального, что есть в вещах данного рода. Но так как это индивидуальное нельзя понимать здесь буквально (ибо тогда общее понятие просто растворилось бы в море частностей), то оно дано здесь как принцип получения индивидуального во всем его бесконечном и непрерывном нарастании, как метод охвата всех индивидуальных явлений, сюда относящихся, как закон непрерывного становления данного общего в любой частной и случайной обстановке, предел этого становления.

Такое вот понимание общего понятия действительно и всерьез хочет выставить на первый план именно познавательную роль понятия и показать ее на структуре самого понятия, а не отделаться здесь пустой и ничего не говорящей фразой. Но это понимание—всецело инфинитезимальное. Если понятие, дифференцируясь, создает свою производную функцию, то этим сразу охватывается и то, что оно есть отражение вещи, и то, что как сама вещь, так и оно само находятся в непрерывном становлении, и то, что оно содержит в себе принцип охвата бесконечного богатства относящихся к нему изменений материального мира.

Так три огромных вопроса о логической природе понятия (а стало быть, и мышления) получают с точки зрения учения о бесконечно–малых одно из самых глубоких и оригинальных решений.

Если мы хорошо усвоили понятие производной, можно перейти наконец и к понятиям дифференциала и интеграла в логике. После всего предыдущего исследования оно уже не составит для нас больших трудностей.

10. ДИФФЕРЕНЦИАЛ В ЛОГИКЕ

1. Для усвоения дифференциала как логической категории посмотрим, как рассуждают математики в их собственной науке.

Чтобы получить категорию дифференциала, уже надо иметь категорию производной. Что такое производная, мы знаем. Допустим, что у нас уже имеется производная у' от какой–нибудь функции у. Возьмем какое–нибудь любое, т. е. совершенно произвольное, приращение независимого переменного ∆х и возьмем произведение данной производной на это произвольно выбранное приращение х. Это произведение

dy=y'∆x

и есть не что иное, как дифференциал функции у.

Для тех, кто не имеет математического образования и сталкивается с этим выражением впервые, необходимо заметить, что выражение это имеет мало общего с получением производной. Хотя произвольно выбранное приращение независимого переменного, а значит, и сам дифференциал неизменно текут и непрерывно становятся, самый этот процесс бесконечно малого становления скрыт[207] здесь только в самой производной, но совершенно не имеется в виду ни в том, ни в другом приращении. Приращение независимого переменного Ах есть нечто совершенно не зависящее от нас, нечто вполне произвольное; это какое угодно приращение, а не только то бесконечно–малое, которое было нам необходимо для получения производной. В связи с этим и дифференциал, хотя он даже в двойном смысле предполагает непрерывность становления, во–первых, ту, благодаря которой возникает производная, и, во–вторых, свою собственную, — сам по себе все же является некоей определенной и устойчивой величиной и есть не становление, но результат этого становления, т. е. ставшее.

вернуться

207

В рукописи: закрыт.