Все дело тут в том, что арифметика на первый план выдвигает конечное и раздельно–устойчивое, рассматривая бесконечное и непрерывное только как задний фон, а анализ выдвигает бесконечное и непрерывно–становящееся, рассматривая как задний план именно конечное. То, что именно они полагают, одно и то же. Но то, κάκ именно они полагают, это—разное. Это — изомеры, различие которых— чисто структурное.
Нам кажется, здесь мы имеем замечательный образец проникновения практики в самые недра мышления. Дело обстоит вовсе не так, что мышление существует само по себе, а потом уже оно применяется на практике. Но дело обстоит так, что без практики мышление не может осуществиться и вообще не может даже просто начаться. Вот перед нами т. н. конечное число натурального ряда и бесконечно–малое математического анализа, или попросту прерывность и непрерывность. По существу, по смыслу прерывность и непрерывность есть совершенно одно и то же; складывается то и другое совершенно из тех же самых категорий. Но вот практика повелительно перетасовывает эти категории, дает им разное направление, по–разному их осмысливает. И в результате — из одного и того же «теоретического» построения — получаются две таких колоссальной важности установки, как прерывность и непрерывность.
Так же точно можно было бы отграничить инфинитезимальный тип числа от трансфинитного, который, наоборот, отвергает чистое становление и базируется на таком бесконечном становлении, которое уже остановилось, закончилось, завершилось. И тут точно так же нетрудно установить пункты тождества и пункты различия.
Вывод: инфинитезимальный тип числа, ничем не отличаясь абстрактно–теоретически от числа арифметического и от числа трансфинитного, резко расходится с ними своей собственной смысловой комбинацией, повелительно вызванной к жизни исключительно практическими потребностями мышления. Является ли данное и единственное «множество» конечным или бесконечным, прерывным или непрерывным, становящимся или устойчивым, это вопрос практики. Число «пять» может быть и конечным числом натурального ряда, и дифференциалом, и интегралом, и производной в зависимости от практики мышления. Само по себе «пять» ровно ничего не значит, или, если выражаться точно, оно ровно ничего не значит познавательно для числа. Всякий смысл есть всегда смысл чего–нибудь, что уже не есть просто самый смысл, но дается самостоятельно, практически. Такое же абстрактно–теоретическое «пять» есть только голый смысл, без того, что им осмысливалось бы. А в таком случае оно уже не есть смысл и никакого познавательного значения для числа не имеет (точно так же, как неизвестно, что за химическое соединение Н3С80, если при этом не задана никакая структура).
Идем дальше.
9. Теперь мы отбрасываем в сторону как арифметическое, так и трансфинитное построение числа и сосредоточиваемся исключительно на инфинитезимальном. Что мы тут должны предпринять, чтобы получить конкретные результаты? Конкретность требует ясных разграничений и четких переходов между разграниченными элементами. Число, как первейшее такое разграничение, является, согласно предыдущему, как раз таким переходом от одного к другому. Ясно, что и в инфинитезимальной области первичное различение должно быть именно таково: одно (бытие, «нечто», «это», акт полагания, изолированное и простое утверждение), становление (переход) и ставшее (исчерпавшее себя и первичное одно и потому остановившееся, завершившееся одно). Здесь также только практика может решить, когда и где применить ту или другую категорию и каково различие возникающих здесь инфинитезимальных чисел.
Именно соответственно этим трем категориям мы получаем здесь три основных инфинитезимальных понятия: бесконечно–малое, непрерывность и предел. Тут, разумеется, может идти долгий спор по части терминологии. Однако, по–видимому, не должно вызывать сомнения, что если мы берем становление с точки зрения «бытия», т. е. с точки зрения «нечто», «этого», то тут мы должны получить «становящееся нечто», «становящееся это», некое бытие или что бы то ни было именно в процессе непрерывного становления. Но что же это тогда такое, если не бесконечно–малое, которое как раз и определяется как то, что «может стать» меньше любой заданной величины? Нам кажется, что также ясна и непрерывность, которая есть становление как именно становление, т. е. положенное[214], утвержденное становление, и предел, который определяется именно как то, к чему вечно стремится переменная величина, и в котором стремление, следовательно, взято именно с точки зрения ставшего.