Выбрать главу
Рис. 8. Принцип действия ракеты.

Подчеркиваем, что воздух мешает полету ракеты. Ракета вовсе не «отталкивается газами от воздуха». Она движется только за счет внутренних сил — сил отдачи. Кстати сказать, «отталкиваться газами от воздуха» примерно так же трудно, как «грести жидким веслом».

Полет ракеты есть проявление одного из законов природы — закона сохранения количества движения. Известно, что для характеристики различных механических движений физики употребляют величину, равную произведению массы тела m на его скорость υ. Эта величина и называется количеством движения.

Для взаимодействующих тел, на которые внешние силы не действуют[5], верен закон:

общее (суммарное) количество движения тел системы остается постоянным.

Действие этого закона можно наблюдать повсюду.

Вот, например, в стоящий на биллиарде шар ударяется другой шар. Первый начинает двигаться вперед, а второй остается на месте. Это означает, что количество движения первого шара перешло ко второму, но общее количество движения двух шаров осталось неизменным.

А вот другой пример, более близкий к межпланетным перелетам. Из пушки с массой М вылетает со скоростью υ снаряд, масса которого m. Найдем, с какой скоростью u (вследствие отдачи) откатится при выстреле орудие.

По закону сохранения количества движения, общее количество движения системы «снаряд–пушка» остается постоянным. До выстрела оно равнялось нулю — и пушка и снаряд находились в покое. После выстрела общее, «суммарное», количество движения равно +Мu.

Отсюда следует, что +Mu=0, т. е. искомая скорость .

Знак минус показывает, что скорость отдачи (отката орудия) направлена в сторону, противоположную движения снаряда.

Рассмотренная задача применима в известной степени и к ракетам. Газы, вылетающие из ракеты, уносят с собой некоторое количество движения и поэтому ракета получает такое же количество движения, но направленное в противоположную сторону.

Однако полет ракеты более сложен, чем движение снаряда. Масса последнего остается постоянной, у ракеты же, непрерывно выбрасывающей из себя газы, масса меняется. Это осложняет расчеты, и по приведенной выше формуле вычислить конечную скорость ракеты (т. е. скорость, которую она приобретает, израсходовав все свое топливо) нельзя.

Теория полета ракеты в межпланетном пространстве была разработана К. Э. Циолковским. Им, в частности, выведена формула, которую можно считать основной формулой астронавтики.

Предположим, что первоначальная масса ракеты (вместе с топливом) М0, ее масса без топлива М, скорость вытекания газов из ракеты c, а конечная скорость, которую приобретает ракета, υ. Тогда, как доказал Циолковский, перечисленные величины связаны следующей формулой:

где е есть иррациональное число, приближенно равное 2,718.

Разберемся прежде всего в том, от каких причин зависит конечная скорость ракеты υ и от чего она не зависит.

Формула Циолковского утверждает, что в среде без тяжести конечная скорость ракеты зависит только от отношения первоначальной массы ракеты к конечной ()и от скорости вытекания газов с. Значит, ни размеры ракеты, ни порядок или продолжительность действия ракетного двигателя на конечную скорость ракеты не влияют. По словам Циолковского: «Происходит ли горение равномерно или нет, длится ли оно секунды или тысячелетия — это все равно: даже перерывы ничего не значат».

И огромная ракета, весящая тысячи тонн, и маленькая ракета весом в сотни граммов могут приобрести одинаковые скорости, лишь бы у них было одинаково отношение и обе ракеты работали бы на одинаковом топливе (т. е. если у них скорость с была бы одинакова).

Ракетный двигатель действует и в безвоздушном пространстве, а потому, как уже отмечалось, воздух для полета ракеты не нужен. Однако для того, чтобы ракета стала межпланетным кораблем, ей необходимо развить «скорость отрыва от Земли», равную 11,2

вернуться

5

Или когда равнодействующая внешних сил равна нулю.