Выбрать главу

Риман изобрел инструменты, которые теперь активно используются всеми математиками. Нет ничего удивительного в том, что в этом случае обычно скупой на похвалу Гаусс выразил энтузиазм по отношению к работе другого ученого. В рамках расширенного представления о геометрии Римана мы видим, что евклидова геометрия — это пространство, определенное постоянной кривизны, равной нулю. Геометрия Лобачевского имеет кривизну -1, а сферическая геометрия — кривизну +1. Хотя Римана можно было бы считать новым Евклидом, его имя связано с очень своеобразной геометрией, которая преобразует сферу в плоскость.

Позднее Риман внес свой вклад в теоретическую физику, и его общее исследование измерения расстояний между точками в искривленных пространствах в конечном счете проложило путь к общей теории относительности. Пространство, в котором мы живем, больше не было евклидовым, теперь у нас появились математические инструменты, позволявшие исследовать истинную геометрию Вселенной.

В геометрии я нашел некоторые несовершенства, которые я считаю причиной того, что эта наука, поскольку она не переходит в анализ, до настоящего времени не вышла ни на один шаг за пределы того состояния, в каком она к нам перешла от Евклида. К этим несовершенствам я отношу неясность в первых понятиях о геометрических величинах, способы, которыми мы себе представляем измерение этих величин, и, наконец, важный пробел в теории параллельных линий, к восполнению которого все усилия математиков до настоящего времени были тщетными.

Николай Иванович Лобачевский.
Геометрические исследования по теории параллельных линий (1840)[20]

17. Диалекты алгебры

В главе 11 мы видели, как алгебра освобождалась от кандалов геометрической размерности и как, начиная с Декарта, символы алгебры — те самые х и у — могли обозначать любое число и сочетаться любым способом, предусмотренным правилами арифметики. В этой главе мы познакомимся с развитием алгебры в англоязычных странах, а затем понаблюдаем за развитием этой дисциплине в других государствах Европы. Быстрое увеличение количества диалектов алгебры привело к фундаментальной переоценке понимания самой математики.

ОСНОВНЫЕ АЛГЕБРАИЧЕСКИЕ ПРАВИЛА АРИФМЕТИКИ ДЛЯ ЛЮБЫХ ЧИСЕЛ X, Y И Z

х + у=у + х сложение коммутативно — сумма двух чисел не зависит от порядка расположения слагаемых

X х у=у х х умножение коммутативно

х + 0 = х сложение имеет нейтральный элемент, ноль, который оставляет любое число неизменным

х х 1 = х умножение имеет нейтральный элемент, единицу, которая оставляет любое число неизменным

X х(у + z) = х х у+х х z умножение ассоциативно по отношению к сложению.

Британский математический анализ отставал от европейского. Здесь во многом виновата ньютоновская нотация флюксий и ее неполноценность по сравнению с символикой, предложенной Лейбницем, — dy/dx. После того как британцы, пусть поначалу и неохотно, приняли европейскую систему обозначений, они добились нескольких довольно заметных достижений. В 1817 году, когда английский математик Джордж Пикок (1791–1858) был назначен экзаменатором по математике в Кембриджском университете, символическая нотация Лейбница наконец заменила флюксии Ньютона. По словам Чарльза Бэббиджа (1791–1871), целью Аналитического общества, основанного в 1813 году, была разработка «принципов чистого „де-изма“ в противовес „староточкизму“ университета»[21]. Другая цель общества заключалась в том, чтобы «сделать мир более мудрым, чем он был, когда мы в него пришли». Пикок в своем «Трактате об алгебре» (1830) назвал эту дисциплину «иллюстративной наукой». Первым делом арифметическая алгебра была отделена от символической. Элементами арифметической алгебры были числа и арифметические операции, тогда как символическая алгебра — это «наука, расценивающая комбинации знаков и символов согласно определенным законам, которые в целом независимы от определенных значений этих символов». Это откровенно неопределенное утверждение открыло дверь к общим исследованиям в области алгебры.

вернуться

20

Цит. по: Н. И. Лобачевский. Геометрические исследования по теории параллельных линий. Перевод, комментарии, вступительные статьи и примечания профессора В. Ф. Кагана. — М.—Л.: Издательство Академии наук СССР, 1945. — С. 37. Не найдя понимания в России, Н. И. Лобачевский опубликовал эту книгу на немецком языке в Берлине в 1840 г.

вернуться

21

В английском языке здесь игра слов: d-ism и dotage. «Де-изм» означает принятие символики Лейбница, где фигурирует символ d. Отрицание «староточкизма» — это отказ от флюксий и флюентов Ньютона, где над х и у полагалось ставить точки или черточки. Dot-age — соединение слов dot (англ. «точка») и age (англ. «старость, возраст») — это и есть «староточкизм». Единственное, что невозможно передать средствами русского языка, — это второй смысл словечка — age, которое выполняет еще и роль суффикса, образующего существительные со значением действия, условия или результата.