Выбрать главу

Но каковы же свойства информационно насыщенных состояний? И как мы можем использовать знания об их свойствах для их идентификации? Одной из важных характеристик информационно насыщенных состояний является то, что они подразумевают наличие длинномасштабных и короткомасштабных корреляций. В случае с кубиком Рубика эти корреляции очевидны:[27] когда кубик находится в идеально упорядоченном состоянии, каждый квадратик того или иного цвета находится в окружении максимально возможного количества квадратиков того же цвета. Однако бросающиеся в глаза корреляции встречаются не только в таких созданных человеком объектах, как кубик Рубика, но и в природе. Рассмотрим цепь ДНК, содержащую длинную последовательность нуклеотидов (А, С, Т и G). Цепочки ДНК являются очень длинными и, несмотря на все крупные научные достижения, мы до сих пор не знаем, за что отвечает большая часть последовательностей ДНК. Тем не менее мы можем определить информационно насыщенные фрагменты ДНК. Простейший способ выявления информации заключается в сравнении цепи ДНК со случайной последовательностью нуклеотидов (с последовательностью, в которой A, С, Т и G выбираются путем бросания четырехгранной игральной кости). Сравнивая существующую последовательность ДНК со случайной последовательностью, мы можем выявить необычные фрагменты ДНК, подразумевая, что они не должны появиться, учитывая то, что мы могли бы ожидать от случайной последовательности. Эти необычные последовательности включают неожиданные корреляции между соседними нуклеотидами (они «произносят слова»), а также корреляции между нуклеотидами, расположенными далеко друг от друга (они «произносят абзацы и главы» и «ссылаются» на «слова», которые были использованы ранее). В итоге эти корреляции обнаруживают существование информации в ДНК, поскольку они говорят нам, что найденные в ДНК последовательности не являются такими комбинациями, к которым можно было бы прийти, исследуя пространство последовательностей случайным образом. Скорее они являются редкими последовательностями, которые были найдены, сохранены, отточены и расширены в процессе эволюции.[28] Кроме того, пример с ДНК говорит нам о том, что наличие информации не зависит от нашей способности ее декодировать. Порядок в ДНК не является повторным введением значения в определение информации. Мы можем обнаружить существование информации в ДНК, хотя и испытываем затруднения при попытке понять, что многие из этих последовательностей означают и за что отвечают. Таким образом, мы не путаем информацию со смыслом и не ищем информацию, которая находится в глазах смотрящего. Корреляции, характеризующие информацию, которая передается в процессе человеческого общения (например, на английском языке) или с помощью биологических форм связи (например, ДНК) присутствуют вне зависимости от того, можем мы их декодировать или нет. Они являются характеристикой информационно насыщенных состояний, а не того, кто их наблюдает. Это говорит нам о том, что, когда дело доходит до коммуникации, значение «едет верхом» на бессмыслице. Наша способность передавать осмысленные сообщения основывается на существующих бессмысленных формах физического порядка. Эти бессмысленные формы порядка и представляют собой информацию.[29]

Наконец, я свяжу определение энтропии, основанное на множественности состояний, с нашей способностью обрабатывать информацию (то есть производить вычисления). Как мы видели на примере кубика Рубика, информационно насыщенные состояния трудно найти не только потому, что они редки, но и потому, что существует очень мало путей, ведущих к ним. Вот почему мы приравниваем чье-либо умение решать эту головоломку к определенной степени развития интеллекта, поскольку те, кто знает, как собирать кубик Рубика, получают признание за умение находить эти редкие пути (или помнят правила их нахождения). Однако существуют более простые примеры, чем кубик Рубика, которые можно использовать для иллюстрации связи между множеством состояний системы и вычислением. Рассмотрим игру, в которой детям необходимо поместить такие формы, как цилиндр и куб, в соответствующие отверстия. В возрасте четырнадцати месяцев большинство детей довольно хорошо справляются с помещением шаров и цилиндров, однако испытывают трудности с кубами, квадратами, треугольниками и другими формами.[30] Почему? Поместить шар в отверстие легко, поскольку шар выглядит одинаково, независимо от того, как вы его повернете (все состояния эквивалентны). Помещение цилиндра в отверстие также не вызывает сложностей, поскольку цилиндр не изменится, если вы повернете его вокруг своей оси. Однако помещение куба в отверстие представляет собой более сложную задачу, так как его можно повернуть лишь несколькими способами. Случай с треугольником еще хуже, поскольку количество вариантов вращения еще меньше. Треугольник с неравными сторонами (для которого существует только одно правильное положение) является для ребенка эквивалентом кубика Рубика, поскольку лишь некоторые дети в состоянии решить эту задачу. Итак, как видите, в процессе развития способности помещать формы в соответствующие им отверстия дети научаются находить эти редкие состояния с низким значением энтропии. Нахождение редких, но полезных состояний в континууме возможных конфигураций – это хорошая упрощенная модель нашей способности обрабатывать информацию, то есть производить вычисления. Это относится и к детям, пытающимся поместить формы в отверстия, и к подросткам, собирающим кубик Рубика.

вернуться

27

Идея о том, что информация подразумевает апериодичность и множество корреляций различного масштаба, также рассматривается, например, в шестой главе книги «Гедель, Эшер, Бах. Эта бесконечная гирлянда» Дугласа Хофштадтера. (Бахрах-М, 2001).

вернуться

28

В последние годы методы, навеянные идеями информации, использовались для идентификации новых генов в том, что считалось межгенным материалом. См. статью Anne-Ruxandra Carvunis et al., «Protogenes and De Novo Gene Birth», Nature 487, no. 7407 (2012): 370–374.

вернуться

29

Конечно, совершенно коррелированное изображение, например равномерно закрашенное одним цветом (гигантский красный квадрат), также несет мало информации, поскольку корреляции настолько сильны, что мы можем определить, как выглядит все изображение, исходя из одного пиксела. Это говорит нам о том, что информация содержится не в идеально упорядоченных или неупорядоченных структурах, а во фрактальных, апериодических, но в некотором роде регулярных структурах, содержащих корреляции на различных расстояниях друг от друга, как в случае с лицом, деревом, двигателем автомобиля или облаком.

вернуться

30

См. статью Дэйва Мангера «A Simple Toy, and What It Says About How We Learn to Mentally Rotate Objects», в блоге Cognitive Daily от 17 сентября, 2008 года, http://scienceblogs.com/cognitivedaily/2008/09/17/a-simple-toy-and-what-it-says, а также статью Helena Örnkloo and Claes von Hofsten, «Fitting Objects into Holes: On the Development of Spatial Cognition Skills», Developmental Psychology 43, no. 2 (2007): 404.