Выбрать главу

Если же вспомнить, что здесь, на страницах этой книги, не раз раздавались призывы к здоровому скептицизму, то возникает вопрос, и даже не один, а несколько:

«В какой степени объективные законы природы, открытые и установленные здесь, на Земле, и подтвержденные на земных, и только земных, объектах, можно считать справедливыми для всей Солнечной системы, для всей Галактики, для всей Вселенной, наконец?»

«Вот вводятся константы — заряд электрона, масса протона, размер атома водорода. А может быть, это только у нас, на Земле, электрон имеет именно такой заряд, а протон именно такую массу, а атом водорода именно такой размер, а во-о-он на той туманности и заряд, и масса, и размеры электрона будут совсем другими?»

«Может быть, только здесь, на Земле, ну, пусть в пределах Солнечной системы, скорость света равна 300 тысячам километров в секунду? А кто измерял скорость света в центре нашей Галактики или в отдаленных районах метагалактики?»

«И вообще, как можно, сидючи на Земле, на ничтожном по масштабам космоса клочке материи, расписываться за всю Вселенную? Не слишком ли много берут на себя физики и химики?»

Конечно, эти и подобные им вопросы возникли не только сейчас, на страницах этой книги. Проблема универсальности наиболее общих законов естествознания (будем, впрочем, пока говорить только о физике и химии) давно занимает умы и тех, кто только приобщается к науке, и ее маститых патронов.

Особенно настороженно относятся к своим константам физики. Среди основных, так называемых фундаментальных, физических констант, пожалуй, не осталось ни одной, которой в той или иной форме не высказывалось бы недоверие. Подозревались: постоянная Планка, гравитационная постоянная, заряд электрона, скорость света. Разумеется, от этих констант не требовалось представить доказательства того, что они в других областях Вселенной сохраняют свое постоянство: все равно физики не смогли бы проверить степень правдивости этих показаний. Но вот получить ответ на вопрос, не изменяются ли константы со временем, было действительно интересно и важно, а главное, можно это постоянство или непостоянство констант во времени проверить. Если бы оказалось, что константы непостоянны, это поставило бы под немалое сомнение космическую универсальность законов естествознания, установленных на Земле и для Земли. (Словосочетание «непостоянная константа» не очень благозвучно: но говорим же мы «слабая сила», «твердый газ» и, наконец, «синяя краска», греша при этом, быть может, против буквы, но не духа русского языка). Опасаясь, что их скепсис подтвердится, физики неоднократно ставили под подозрение постоянство физических констант. Но пока они, физические константы, более чем успешно отбивали возводимые на них физиками «наветы». Не будем приводить всю цепочку доказательств, к которым прибегали физики, чтобы подтвердить или опровергнуть неизменность постоянной Планка, гравитационной постоянной и других фундаментальных констант, — это слишком бы увело нас в сторону от темы книги[7]. Остановимся лишь на проблеме неизменности заряда электрона.

Предположим, что когда-то, в далекие геологические эпохи, заряд электрона, а следовательно, и противоположный ему по знаку, но равный по абсолютной величине заряд протона был меньше, чем сейчас. Степень устойчивости атомного ядра, как мы помним, определяется той энергией, с какой отталкиваются друг от друга протоны. Естественно, чем сильнее отталкивание, тем менее стабилен изотоп, или, говоря точнее, тем меньше его период полураспада. Если бы предположение о меньшем заряде электрона было верным, то тогда в прошлом нашей планеты соотношение между различными изотопами одного и того же элемента было бы иным. Но отношение, например, хлора-35 к хлору-37 или серы-32 к сере-34 и в образцах пород, возраст которых приближается к возрасту Земли, и в более юных породах, которым от силы миллиард лет, одно и то же. Есть все основания считать, что заряд электрона, по крайней мере, за 4–4,5 миллиарда лет не увеличивался.

Если этого доказательства окажется недостаточно, то можно обратиться к другим свидетелям отдаленного прошлого нашей планеты — долгоживущим радиоактивным изотопам. Вот, к примеру, один из естественных радиоизотопов середины периодической системы — рений-187. Выбрасывая электрон, этот изотоп с периодом полураспада 40 миллиардов лет превращается в осмий-187. Если бы 3–4 миллиарда лет назад электрон имел меньший заряд, ему, естественно, легче было бы покидать ядро рения-187. Следовательно, период полураспада этого изотопа должен был быть меньше современного. Даже незначительное понижение заряда электрона должно вести к существенному увеличению скорости бета-распада. Так, если бы заряд электрона 3 миллиарда лет назад был на 0,05 % ниже, то это привело бы к уменьшению периода полураспада рения-187 в 200 раз, то есть этот изотоп рения распадался бы наполовину уже за 200 миллионов лет, а это уже значительно меньше времени существования нашей планеты, и до наших дней дожили бы жалкие остатки рения-187. А между тем этот изотоп здравствует сейчас на Земле.

вернуться

7

О различных физических константах и способах их измерении можно прочесть в книге К. Гильзина «В необыкновенном мире» («Детская литература», 1974).