Выбрать главу

Рис. 2.1. Участники Летней школы по коннекционистским моделям 1986 г. в Университете Карнеги-Меллона (Питтсбург, США)

На фото мы видим Станисласа Дехаена (SD), Майкла Джордана (MJ), Джея Макклелланда (JMcC), Джеффри Хинтона (GH), Терри Сейновски (TS) и меня (YLC). Многие участники встречи тоже станут видными фигурами в области машинного обучения, искусственного интеллекта и когнитивных наук: Энди Барто, Дэйв Турецки, Джерри Тезауро, Джордан Поллак, Джим Хендлер, Майкл. Мозер, Ричард Дурбин и ряд других (© Организаторы летней школы).

Хотя я был всего лишь аспирантом, Джеффри предложил мне выступить с речью, объясняя это тем, что именно я создал алгоритм обратного распространения. За ужином, запив его хорошей бутылкой бордо, которую я привез с собой в багаже, он сказал мне, что через год планирует уйти из университета Карнеги-Меллон[25] и перейти в Университет Торонто. «Вы хотите присоединиться ко мне в качестве младшего исследователя?» Конечно! У меня оставался лишь год на то, чтобы защитить докторскую.

Революция продолжалась. Публикация статьи Рамельхарта-Хинтона-Уильямса об обратном распространении произвела эффект взорвавшейся бомбы[26]. Новости об успехе NetTalk распространялись как лесной пожар. Сообщество исследователей нейронных сетей быстро пополнялось все новыми участниками.

Мое программное обеспечение для моделирования нейронных сетей и обучения методом обратного распространения ошибки – все еще называемое HLM – представляло интерес для некоторых французских производителей. В частности, программу купила компания Thomson-CSF (теперь Thales).

Я получил докторскую степень в июне 1987 г. Диссертацию в Университете Пьера и Марии Кюри (теперь переименованном в Университет Сорбонны) я защищал в буквальном смысле на костылях, потому что в апреле сломал лодыжку, экспериментируя с новым методом передвижения по песку при помощи паруса! Джеффри Хинтон входил в состав жюри вместе с Морисом Милграмом, Франсуазой Фогельман-Суле, Жаком Питра (один из столпов исследований в области символического ИИ во Франции) и Бернаром Анжениолем (директором исследовательской группы Thomson-CSF). Через месяц я присоединился к Джеффри в Торонто вместе с женой и нашим ребенком, которому тогда исполнился всего лишь год. Моя жена согласилась отодвинуть на второй план свою карьеру фармацевта и заниматься сыном во время нашего пребывания в США, которое, как мы считали, не должно было продлиться более года…

Я взял с собой одного из своих друзей, Леона Ботту, студента, которого я встретил в начале 1987 г., когда он учился на последнем курсе Политехнической школы. Он проявил интерес к нейронным сетям и решил пройти со мной выпускную стажировку, не сообщив администрации школы, что я на тот момент еще не защитил докторскую. У меня уже были планы написать новое программное обеспечение для создания и обучения нейронных сетей. Это должен был быть симулятор, управляемый интерпретатором Lisp (особенно гибкого и интерактивного языка программирования). Я попросил Леона создать такой интерпретатор[27], что он и сделал буквально за три недели. Нашему сотрудничеству способствовал тот факт, что мы работали на одинаковых компьютерах: Amiga от компании Commodore. В отличие от ПК и Mac того времени, компьютеры Amiga обладали свойствами, аналогичными свойствам рабочих станций Unix, широко распространенных в ИТ-отделах по обе стороны Атлантики: они программируются на языке C с помощью компилятора gcc и текстового редактора Emacs. Я писал диссертацию на своем Amiga, используя компьютерную систему обработки текстов LaTeX. Мы обменивались программами удаленно, подключая к нашим компьютерам сеть Minitel.

Мы назвали новую программу SN (от термина «Neuronal Simulator», т. е. «нейронный симулятор»). Ее написание положило начало сотрудничеству и дружбе, продлившимся долгие годы: и сегодня офис Леона находится рядом с моим, в помещении FAIR[28] в Нью-Йорке.

В Торонто я закончил работу над SN и модифицировал эту программу, чтобы реализовать идею архитектуры нейронной сети, адаптированной к распознаванию изображений, которую я обдумывал уже некоторое время (теперь эта архитектура называется «сверточной сетью»; см. Главу 6). Она была вдохновлена неокогнитроном Фукусимы, но использовала более «классические» нейроны и управлялась алгоритмом обратного распространения. В то же время Джеффри Хинтон разработал другой, более простой тип сверточной сети, которую он использовал для распознавания речи. Он назвал ее TDNN (Time Delay Neural Network, т. е. «нейронная сеть с временной задержкой»).

вернуться

25

Хинтон преподавал там в должности профессора с 1982 г. – Прим. ред.

вернуться

26

D. E. Rumelhart, G. E. Hinton, R. J. Williams, Learning internal representations by error propagation, in D. E. Rumelhart, J. L. McClelland, PDP Researche Grou Parallel Distributed Processing: Explorations in the Microstructure of Cognition, MIT Press, 1986, vol. 1, p. 318–362.

вернуться

27

Язык Lisp был создан в конце 50-х годов автором термина «искусственный интеллект» специально для работы с ИИ. Долгое время он, в различных вариантах, которых было очень много, занимал в разработке ИИ то место, которое теперь занимает Python. Как и Python, Lisp является интерпретируемым языком, он нуждается в запущенной программе – интерпретаторе, которая построчно исполняет (интерпретирует) написанный на языке Lisp программный код. Интерпретатор, в свою очередь, может быть написан для разных целей и с разными особенностями. Леон Ботта, очевидно, написал интерпретатор Lisp, специализированный именно для управления симулятором Лекуна. – Прим. ред.

вернуться

28

Исследование искусственного интеллекта компании Facebook.