А теперь предлагаю вам вернуться к первой части этого рассказа и перечитать ее. Какую вопиющую ошибку я допустил, описывая, как граф Дракула делает коктейли?
В моем описании сказано, что миссис Дракула видела мужа в зеркале. Но, как известно (или должно быть известно) каждому читателю, вампиры в зеркале не отражаются.
Постскриптум
Сотни математических карточных фокусов используют, по сути, тот же принцип. Вот хороший пример, можете испробовать его на приятелях.
Перед тем как показать трюк, разделите стандартную колоду из пятидесяти двух карт на две равные части. Переверните одну половину и перемешайте двадцать шесть карт, лежащих рубашкой вниз, с двадцатью шестью, лежащими рубашкой вверх. Приступая к фокусу, продемонстрируйте всем, что получившаяся колода представляет собой смесь карт, обращенных рубашкой вверх и вниз, но не говорите, сколько из них перевернуто. Пусть кто-нибудь перетасует колоду и под столом передаст ее вам. Через несколько мгновений вы достаете карты, держа по полколоды в каждой руке, и объявляете, что в каждой из этих половинок — одно и то же число карт, лежащих рубашкой вниз! Выяснится, что так оно и есть.
Секрет фокуса. Под столом быстро отсчитайте двадцать шесть карт. Переверните любую из двух полуколод, прежде чем выложить все карты на стол. Понимаете, каков здесь механизм? Перед тем как вы перевернули полуколоду, количество карт, лежащих рубашкой вниз в одной полуколоде, равно числу карт, лежащих рубашкой вверх, в другой. Переверните полуколоду — и те карты, что лежали рубашкой вниз, будут лежать рубашкой вверх (и наоборот). В результате в каждой полуколоде окажется равное число карт, повернутых рубашкой в одну сторону.
Глава 10
Ряд Фибоначчи
Классический ряд Фибоначчи начинается так: 1, 1, 2, 3, 5, 8, 13, 21… Каждый член последовательности (кроме первых двух) — сумма двух предыдущих. Обобщенный случай ряда Фибоначчи — последовательность, в начале которой могут стоять два любых целых числа.
Числам Фибоначчи посвящено необозримое количество литературы. Существует даже периодическое издание — «Fibonacci Quarterly» («Ежеквартальник Фибоначчи»). Хорошим введением в эту тему может стать книга Альфреда Позантье и Ингмара Лемана «Феноменальные числа Фибоначчи» (Амхерст, штат Нью-Йорк: «Prometheus», 2007).
Моя статья о некоторых малоизвестных свойствах чисел Фибоначчи вышла в «Journal of Recreational Mathematics» («Журнале развлекательной математики») (№ 34, 2005–2006, с. 183–190).
Ряд Фибоначчи — слыхали? —
1 да 1 — в начале,
потом — 2, 3, 5, 8,
отложите вопросы,
веселье мы вам обещали!
Прошло почти два десятка лет со времени моего последнего интервью с доктором Матриксом, которое я взял у него на математической конференции в Лиссабоне. (Это интервью завершает подборку моих колонок из журнала «Scientific American», составившую книгу «Использование покрытий Пенроуза для разгадки шифров»[52].) С тех пор я совершенно потерял след старого хрыча и его дочери Ивы, наполовину японки. Так что я с огромным удивлением и удовольствием повстречался с ним на конференции по теории чисел, проходившей в Стэнфордском университете. В программе значился его доклад «Некоторые малоизвестные факты о рядах Фибоначчи».
Ивы в Стэнфорде не было — теперь она уже не сопровождала отца в его вояжах, поскольку в 1991 году вышла замуж за одного японского фокусника. Ныне она живет в Токио вместе с мужем и двумя сыновьями-подростками — Ирвингом и Джошуа.
Сам доктор Матрикс заметно постарел. Волосы у него стали снежно-белыми, однако изумрудно-зеленые глаза сохранили всегдашнюю живость и пронзительность, а вышагивал он по-прежнему ровно и уверенно. Он передал мне текст своей лекции. Из нее, а также из наших дальнейших бесед я почерпнул необыкновенные сведения.
Пусть А, В, С, D — четыре любых последовательных члена обобщенного ряда Фибоначчи. Тогда произведение А и D даст одно число из пифагоровой тройки[53], а удвоенное произведение В и С — другое число из той же тройки! Рассмотрим, к примеру, четыре первых члена простейшего ряда Фибоначчи — 1, 1, 2, 3. Подстановка этих чисел в наши формулы даст знакомые длины сторон прямоугольного пифагорова треугольника — 3, 4, 5. С помощью такой процедуры можно, разумеется, создать бесконечное количество пифагоровых троек, хотя, к сожалению, не все такие триады.