Подобные рассуждения грешат таким же искажением научного языка, как и заявления, что астрономы, мол, изучают «нездешние» образования, поскольку телескопы — часть человеческой культуры, не говоря уж о том, что и вся астрономия тоже является ее частью. Отсюда недалеко до утверждений, что и вся Вселенная существует лишь потому, что ее наблюдают человеческие цивилизации (а не наоборот — мы существуем, потому что нас создала Вселенная).
Возможно, кардинальные числа, введенные Кантором[82], не находятся «здесь», но кто знает?.. Не исключено, что они скрываются где-нибудь в космосе. Подобно физикам, математики часто совершают открытия, исследуя материальные модели. Классический пример: Фрэнк Морли вывел свою «теорему Морли», изучая углы бумажных моделей произвольных треугольников — моделей таких же «здешних», как камни или звезды. Никоим образом нельзя сказать, будто Морли изобрел свою теорему или нашел ее где-то внутри своего черепа или культуры, к которой принадлежал.
В своей статье Херш справедливо называет меня теистом. И добавляет, что я верю в действенность молитвы. Атеисту Хершу это кажется оскорблением. Что ж, все зависит от значения слова «действенность». Я не верю, что если кто-нибудь помолится о победе футбольной команды или о выздоровлении любимого человека, больного раком, то Господь приложит десницу к Вселенной и тут же ее изменит. Я могу допустить, что Бог вполне способен менять вероятности исхода событий на квантовом уровне, — в наши дни эта догадка популярна среди теистов, — но все же я склонен сомневаться и в этом.
Однако я в самом деле считаю, что молитвы о прощении оправданны, а молитвы о даровании мудрости помогают принимать верные решения. Гилберт Честертон замечает где-то, что для атеиста настанет грустный день, когда с ним произойдет что-то чудесное, а ему будет некого за это поблагодарить.
Херш пишет также, что как-то раз я обвинил его в сталинизме. Не могу себе представить, как бы я мог такое сделать. Если все-таки сделал — приношу свои извинения. Возможно, я однажды напомнил ему душераздирающую сцену из оруэлловского «1984», где чиновник ухитряется, пытая узника, заставить того поверить, что, когда два пальца прибавляют к двум, появляется еще и пятый.
Кроме того, Херш заявляет: один раз я обвинил его в том, что он солипсист. И снова я не совсем понимаю, что он имеет в виду. Не исключаю, что я описывал его антиреализм как туманную разновидность социального (коллективного) солипсизма. Херш — большой поклонник статьи антрополога Лесли Уайта «Место математической реальности». Ее место, как заявляет Уайт, не во внешнем мире, а в человеческой культуре. Математические теоремы сходны в этом смысле с правилами дорожного движения, модами, живописью, музыкой и т. п.
Конечно же это не солипсизм в обычном смысле слова. За пределами психиатрических лечебниц вообще нет истинных и последовательных солипсистов. Однако антиреализм Уайта и Херша приправлен социальным солипсизмом — поскольку, по их утверждениям, если исчезнет человеческая цивилизация, уйдет в небытие и вся математика. Ну да, Вселенная при этом не погибнет, однако больше не останется никого, кто занимался бы математикой (разве что ученые на других планетах). Полагаю, Херш согласится: то, что мы называем математическими структурами и явлениями, будет по-прежнему существовать, однако если не останется ни одного разумного существа, которое бы изучало их, во Вселенной не будет ничего, что заслуживало бы названия математики.
И тут снова возникает вопрос о том, какой же научный язык в данном случае самый лучший и наименее противоречивый. Мне кажется, лучше всего сказать, что если исчезнут все разумные существа, то 2+2 по-прежнему будет равно четырем, отношение длины окружности лунного диска к его диаметру по-прежнему будет близко к та, а сумма внутренних углов евклидова треугольника будет по-прежнему составлять 180°. Подозреваю, Херш предпочтет заявить, что ни одно из этих суждений больше не будет верным, поскольку не останется цивилизаций, где такие утверждения могли бы выдвигаться. А если он думает иначе, тогда Херш, чего доброго, превратится в платоника.
Вместе с Полем Дираком и тысячами других выдающихся математиков я верю, что существует Бог — непревзойденный математик, чьи познания в этой науке гораздо, гораздо обширнее наших. Но бесконечны ли они — откуда мне знать? Господу наверняка неведома последняя цифра числа то, ибо такой цифры не существует вообще. Даже будь я атеистом, мне бы казалось чудовищным высокомерием считать, что математика реально существует лишь в сознании разумных обезьян.
82
Кардинальное число множества — обобщение понятия количества (числа элементов множества), имеющее смысл для всех множеств, включая бесконечные. Введено немецким математиком Георгом Кантором (1845–1918), создателем теории множеств