Выбрать главу

Рис. 2.6.

Айнштайн зробив революційне припущення: гравітація — це не звичайна сила, а наслідок того, що часопростір не плоский, як уважали раніше, а викривлений, або «здеформований» розподілом маси й енергії в ньому. Сила, звана гравітацією, не змушує такі тіла, як Земля, рухатися викривленою орбітою; вони просто рухаються у викривленому просторі найбільше відповідним до прямого шляхом, який називають геодезичною. Геодезична — це найкоротший (або найдовший) шлях між двома близькими точками. Наприклад, поверхня Землі — двовимірний викривлений простір. Геодезична на Землі називається великим колом, і це найкоротший маршрут між двома точками (рис. 2.7). А що геодезична — найкоротший шлях між будь-якими двома аеропортами, то саме такий маршрут задають диспетчери авіякомпаній пілотам. Відповідно до загальної теорії відносності, тіла завжди рухаються прямими лініями в чотиривимірному часопросторі, але в нашому тривимірному просторі нам здається, що вони рухаються вигнутими траєкторіями. (Це все одно, що дивитися на літак, який летить над горбастою місцевістю. Хоч він і рухається по прямій у тривимірному просторі, але його тінь на двовимірній поверхні Землі рухається криволінійною траєкторією.)

Рис. 2.7.

Маса Сонця так викривляє часопростір, що нам у тривимірному просторі здається, ніби Земля рухається круговою орбітою, хоч насправді вона рухається прямолінійно в чотиривимірному часопросторі.

Фактично, орбіти планет, передбачені загальною теорією відносності, майже збігаються з передбаченими Ньютоновою теорією гравітації. Однак у випадку Меркурія — найближчої до Сонця планети, яка, зазнаючи найсильнішого гравітаційного впливу, має досить витягнуту орбіту — загальна теорія відносності передбачає, що довга вісь еліпса повинна обертатися навколо Сонця зі швидкістю близько одного градуса за десять тисяч років. Хоч цей ефект і незначний, проте його помітили ще до 1915 року, він став одним із перших підтверджень Айнштайнової теорії. Останніми роками за допомогою радара були виміряні ще менші відхили орбіт інших планет від Ньютонових передбачень, і всі вони узгоджуються з передбаченнями загальної теорії відносності.

Промені світла теж мають рухатися по геодезичних у часопросторі. Те, що простір викривлений, знов-таки означає, що світло більше не шириться в ньому прямолінійно. Загальна теорія відносності передбачає, що світлові промені згинатимуться в гравітаційних полях. Наприклад, світлові конуси точок поблизу Сонця будуть трохи загнуті досередини під дією маси Сонця. Це означає, що світло від далекої зорі, яке проходить поблизу Сонця, відхилятиметься на невеличкий кут, і спостерігач на Землі бачитиме цю зорю в іншому місці (рис. 2.8). Певна річ, якби світло від зорі завжди проходило біля Сонця, ми не змогли б сказати, чи то відхиляється світло, чи то зірка і справді там, де ми її бачимо. Але через те, що Земля обертається навколо Сонця, різні зорі опиняються за ним, і їхнє світло відхиляється. Отже, вони змінюють своє видиме положення відносно інших зірок. Зазвичай цей ефект дуже важко помітити, бо сонцеве світло не дає бачити зір, що з’являються на небосхилі поблизу Сонця. Однак така можливість з’являється під час сонцевого затемнення, коли Місяць затуляє собою сонцеве світло. 1915 року, в самісінький розпал Першої світової війни, годі було перевірити Айнштайнове передбачення щодо відхилення світла. І тільки 1919 року в Західній Африці британська експедиція, спостерігаючи затемнення, підтвердила, що світло справді відхиляється від Сонця, як і передбачала теорія. Те, що британські науковці довели правильність німецької теорії, було сприйняте як великий повоєнний акт примирення між двома країнами. Але, хоч це й видається іронічним, подальша експертиза фотографій, зроблених під час цієї експедиції, виявила помилки такого ж рівня, як і сам ефект, що його намагалися виміряти. Вимірювання, що їх зробили англійці, були або щасливим збігом обставин, або (і таке часто трапляється в науці) випадком, коли дістають те, що хочуть дістати. Щоправда, відхилення світла точно підтвердила згодом низка інших спостережень.

Рис. 2.8.

Ще одне передбачення загальної теорії відносності полягає в тому, що поблизу такого масивного тіла, як Земля, час спливає повільніше. Це можна пояснити зв’язком між енергією світла і його частотою (тобто числом хвиль світла за секунду): що більша енергія, то вища частота. Світло, поширюючись угору в гравітаційному полі Землі, втрачає енергію, і тому його частота зменшується. (Це означає, що проміжок часу між двома сусідніми гребенями хвилі збільшується.)[10] Спостерігачеві, який перебуває на висоті, здаватиметься, що внизу все відбувається повільніше. Це передбачення перевірили 1962 року за допомогою двох дуже точних годинників, установлених на верхній і нижній частині водогінної вежі. Виявилося, що годинник, ближчий до поверхні Землі, іде повільніше, а це цілком узгоджується з загальною теорією відносності. З огляду на появу надточних систем навігації, що діють на основі сигналів від супутників, різниця в ході годинників на різних висотах має тепер велике практичне значення. Якщо знехтувати передбачення загальної теорії відносності, то хиба в розрахунках положення може становити кілька миль!

Ньютонові закони руху поклали край ідеї абсолютного положення в просторі. Теорія відносності звільнила нас від абсолютного часу. Розгляньмо пару близнюків. Припустімо, що один з них пішов жити на верховину гори, а другий лишився на рівні моря. Тоді перший близнюк старішатиме швидше, тож якби вони знову зустрілися, він був би старший за іншого. Щоправда, різниця у віці буде дуже мала, проте вона була б набагато більша, якби один з близнюків пустився в довгу подорож на космічному кораблі зі швидкістю, близькою до світлової. Коли б він повернувся, то був би набагато молодший від того, що лишився на Землі. Це так званий парадокс близнюків, однак парадокс для того, хто підсвідомо сприймає ідею абсолютного часу. В теорії відносності немає ніякого унікального абсолютного часу. Замість цього кожна людина має свої особисті міри часу, які залежать від того, де вона перебуває і як рухається.

До 1915 року вважали, що час і простір — це незмінна арена, на яку все, що відбувається там, аж ніяк не впливає. Так було і в спеціяльній теорії відносності. Тіла рухалися, сили притягали й відштовхували, а час і простір просто тривають і не зазнають впливу. Було природно думати, що простір і час вічні.

Однак у загальній теорії відносності ситуація зовсім інша. Час і простір тепер динамічні величини: рух тіла чи дія сили змінює кривину часу й простору, а структура часопростору і собі впливає на те, як рухаються тіла і діють сили. Час і простір не тільки впливають, а й самі зазнають впливу від усього, що відбувається у Всесвіті. Як без уявлень про час і простір годі вести мову про події у Всесвіті, так і в загальній теорії відносності безглуздо говорити про час і простір за межами Всесвіту.

вернуться

10

Що частота світла зменшується, коли світло поширюється вгору, — твердження хибне. Справді, «що вища енергія, то більша частота». Але про яку енергію йдеться у квантовій фізиці? Про повну енергію! Наприклад, якщо камінь летить угору, то його повна, тобто кінетична плюс потенціяльна, енергія не змінюється, а тим самим не змінюється і частота квантовомеханічної хвилі, пов’язаної з каменем. Світло, що поширюється вгору, випромінюється з меншою частотою, тому що час поблизу Землі спливає повільніше. Даючи хибне пояснення червоного зсуву (поряд з правильним), Гокінг повторює помилку багатьох великих і видатних фізиків, зокрема нобелівських лавреатів Макса Борна, Ричарда Файнмена, Віталія Ґінзбурґа, які, на жаль, теж, пояснюючи, що таке червоний зсув, порушували «принцип Айнштайна»: «Пояснення повинно бути якомога просте, але не простіше». — Прим. Ю. Степановського.