Выбрать главу

Все три участника знают, что Смит никогда не промахивается, Браун попадает в цель в 80 % случаев, а Джонс, стреляющий хуже всех, промахивается так же часто, как и попадает в цель.

Кто из дуэлянтов имеет более высокий шанс уцелеть, если считать, что все трое придерживаются оптимальных стратегий и никто из них не будет убит шальной пулей, предназначенной другому?

Более трудный вопрос: чему равна вероятность остаться в живых для каждого из дуэлянтов?

Ответы

1. Головки болтов не сближаются и не расходятся. Движение болтов можно сравнить с движением человека, идущего вверх по спускающемуся эскалатору со скоростью эскалатора.

2. Чтобы обеспечить кругосветный полет одного самолета, достаточно двух самолетов. Сделать это можно многими способами.

Способ, предлагаемый нами, по-видимому, наиболее экономичен: расходуется лишь пять заправок горючего, пилоты двух обеспечивающих полет самолетов успевают перед вылетом с базы выпить по чашке кофе и перехватить по бутерброду, а весь метод обладает не лишенной приятности симметрией.

Самолеты А, В и С стартуют одновременно. Пролетев 1/8 намеченного расстояния (то есть длины окружности большого круга), С перекачивает 1/4 исходного запаса горючего в баки А и 1/4 — в баки В, после чего у него остается 1/4 заправки. Этого количества горючего ему хватает, чтобы вернуться на базу.

Самолеты А а В, продолжая полет, проходят еще 1/8 кругосветного маршрута, после чего В перекачивает 1/4 заправки в баки А.

Баки В остаются заполненными ровно наполовину, и он благополучно дотягивает до родного аэродрома, совершая посадку уже с пустыми баками.

Полностью заправленный самолет А продолжает лететь до тех пор, пока у него не кончится горючее. К этому моменту он находится на расстоянии 1/4 всего пути от базы, и его встречает самолет С, успевший перезаправиться на острове. С перекачивает в баки А 1/4 заправки и вслед за А берет курс на базу. На расстоянии 1/8 окружности земного шара горючее у А и С кончается, но тут их встречает побывавший на базе В, который отдает каждому из них по 1/4 полной заправки. После этого топлива в баках каждого самолета хватает как раз на то, чтобы благополучно вернуться на свою базу (правда, садиться приходится с пустыми баками).

Графически весь полет можно изобразить с помощью диаграммы, показанной на рис. 112, где по горизонтальной оси отложено расстояние, а по вертикальной — время. Правый и левый края диаграммы следует считать склеенными.

Рис. 112 К задаче о кругосветном полете самолета.

3. Взяв раствор циркуля равным квадратному корню из 20 см и поставив его острие в центр черной клетки на шахматной доске с четырехсантиметровыми клетками, вы сможете описать наибольшую из окружностей, проходящих только по черным клеткам.

4. Любое поперечное сечение пробки плоскостью, перпендикулярной верхнему ребру и основанию, имеет вид треугольника. Если бы пробка была цилиндрической, соответствующие сечения были бы прямоугольниками, при этом площадь каждого прямоугольного сечения была бы вдвое больше площади треугольного сечения. Поскольку цилиндр можно считать составленным из прямоугольных поперечных сечений, объем универсальной пробки должен составлять половину объема цилиндра: объем цилиндра равен 2π, следовательно, объем универсальной пробки равен π.

В действительности же существует бесконечно много пробок различной формы, которыми можно заткнуть все три отверстия.

Пробка той формы, которая описана в условии задачи, имеет наименьший объем по сравнению с любым выпуклым телом, способным заткнуть те же три дырки. Пробку наибольшего объема нетрудно получить, если обрезать цилиндрическую пробку так, как показано на рис. 113.

Рис. 113 Как сделать универсальную пробку наибольшего объема.

Именно эту форму пробки обычно имеют в виду составители сборников головоломок, предлагая читателям найти универсальную затычку, подходящую к круглому, треугольному и квадратному отверстиям. Ее объем равен 2π — 4/3.

5. Написать подряд два раза трехзначное число — все равно что умножить это число на 1001. Число 1001 разлагается на простые множители 7, 11 и 13, поэтому, приписав к трехзначному числу его же еще раз справа, задумавший просто умножает свое число на 7 х 11 х 13. Разделив шестизначное число на 7, 11 и на 13, он, естественно, получает снова исходное трехзначное число. Эта задача заимствована из книги Я. И. Перельмана.[40]

6. Две ракеты сближаются со скоростью 30 000 миль/час, или 500 миль/мин. Отсчитывая время назад, от момента столкновения, мы получаем, что за минуту до столкновения ракеты должны были бы находиться на расстоянии 500 миль друг от друга.

7. Рассмотрим исходное расположение монет в виде треугольника. Обозначим цифрой 1 верхнюю монету, цифрами 2 и 3 — монеты в следующем ряду и цифрами 4, 5, 6 — монеты в нижнем ряду. Следующие четыре хода позволяют получить представление о множестве других решении: передвинем монету 1 так, чтобы она коснулась монет 2 и 4; монету 4 передвинем так, чтобы она коснулась монет 5 и 6; монету 5 передвинем так, чтобы она коснулась монет 1 и 2 снизу; и, наконец, монету 1 передвинем так, чтобы она коснулась монет 4 и 5.

8. Поскольку в каждом рукопожатии участвуют двое людей, полное число рукопожатий, которыми обменялись все участники конгресса, делится на 2 и поэтому четно. Число рукопожатий, приходящихся на долю тех, кто обменялись со своими коллегами четным числом рукопожатий, очевидно, четно. Только сумма четного числа нечетных слагаемых может быть четным числом, поэтому число тех участников конгресса, которые обменялись с другими участниками нечетным числом рукопожатий, четно.

То же утверждение можно доказать и иным путем. Перед началом работы конгресса число его участников, обменявшихся нечетным числом рукопожатий, равно 0. После первого рукопожатия появляются два «нечетных участника». Все рукопожатия, начиная со второго, делятся на три типа: рукопожатия между двумя «четными» участниками, рукопожатия между двумя «нечетными» участниками и «смешанные» рукопожатия между «четными» и «нечетными» участниками. Каждое «четно-четное» рукопожатие увеличивает число «нечетных» участников на 2. Каждое нечетное» рукопожатие уменьшает число «нечетных» участников также на 2. Каждое «нечетно-четное» рукопожатие превращает «нечетного» участника в «четного» и, наоборот, «четного» участника в «нечетного» и, таким образом, оставляет число «нечетных» участников без изменения. Поэтому четное число биофизиков, обменявшихся нечетным числом рукопожатий, не может изменить своей четности и должно всегда оставаться четным.

Оба доказательства применимы к графу, на котором линии связывают точки попарно. Линии графа образуют сеть. Число точек сети, из которых выходит нечетное число линий, четно. Эта теорема встретится нам еще раз в главе 22 при рассмотрении головоломок, связанных с блужданием по сети линий.

9. Наибольшую вероятность выжить в «треугольной» дуэли имеет худший из стрелков, Джонс. Следом за ним идет Смит, который никогда не промахивается. Поскольку противники Джонса, когда настает их очередь стрелять, целятся друг в друга, оптимальная стратегия для Джонса заключается в том, чтобы стрелять в воздух до тех пор, пока один из его противников не будет убит. После этого он стреляет в оставшегося противника, имея перед ним большое преимущество.

вернуться

40

Перельман Я. И. Живая математика: 9-е изд. — М.: Наука, 1970.