Выбрать главу

В развитии технологий солнечной энергетики самое деятельное участие принимали и российские ученые, в частности упомянутый выше академик Алферов получил премию «Чистая энергия» за «фундаментальные исследования и значительный практический вклад в создание полупроводниковых преобразователей энергии, применяемых в солнечной и электроэнергетике».

Львиную долю мирового рынка фотоэлектрики, примерно 90 %, занимают сегодня солнечные модули на основе кристаллического кремния. Около 10 % приходится на тонкопленочные технологии разных видов, а на быстрорастущий сегмент концентрированной фотоэлектрики (CPV) пока менее 1 %.

Интригой дальнейшего развития солнечной энергетики является эффективность солнечных (фотоэлектрических) модулей и динамика их стоимости, а также прогресс в производстве иных составляющих солнечных электростанций. В принципе, солнечная энергетика бурно растет уже и при нынешнем уровне производительности модулей, а дальнейший рост эффективности приведет к еще большему повышению ее конкурентоспособности на энергетическом рынке. При этом очевидно, что эффективности есть куда расти. Чуть ли не ежемесячно приходят новости об очередном технологическом прорыве в том или ином исследовательском центре, позволяющем добиться повышения эффективности разных типов модулей.

В настоящее время в лабораторных условиях установлены следующие рекорды эффективности солнечных ячеек: 25 % – для монокристаллических (sc-Si), 20,4 % – для поликристаллических (mc-Si). В сфере тонкопленочной технологии лучшие результаты составляют 19,8 % для пленок на основе диселенида меди индия галлия (CIGS) и 21 % для пленок на основе теллурида кадмия (CdTe)[44]. Последний из указанных типов модулей имеет, по-видимому, все шансы потеснить кремниевые технологии в связи с ростом эффективности, сочетающимся с меньшей энергоемкостью и низкими удельными затратами на производство 1 Вт.

За последнее десятилетие средняя эффективность находящихся в продаже модулей на основе кристаллического кремния увеличилась с 12 до 16 %, а лучшие коммерческие модели имеют эффективность 21 %. У тонкопленочных модулей (CdTe) за то же десятилетие средняя эффективность выросла с 9 до 13 %, а рекордный показатель составляет 17 %[45].

Между тем современные модели монокристаллических модулей уже сейчас показывают лабораторную эффективность, превышающую 23 %, что обещает скорый рост эффективности модулей, предлагаемых на рынке[46]. Более того, продолжающие эксперименты с химической структурой модулей и использованием для их производства все новых материалов дают обнадеживающие результаты. Например, использование минерала перовскита при производстве кремниевых модулей, возможно, позволит еще больше увеличить их эффективность и снизить стоимость[47].

В сфере концентрированной фотоэлектрики (CPV) эффективности существенно выше, но она работает только с прямой солнечной радиацией, что ограничивает географию ее использования богатыми солнцем регионами. Серийные показатели достигают здесь 35 %[48], а лабораторный мировой рекорд для многопереходных солнечных элементов (multi-junction solar cells) составляет 44,7 %[49].

Производство компонентов солнечных электростанций (помимо модулей) также совершенствуется с высокой скоростью. Снижение стоимости инверторов, основных элементов солнечных электростанций, практически повторяет кривую стоимости фотоэлектрических модулей. Расход материалов для производства инвертора за последние десять лет сократился с 12 до 2 кг на ватт[50]. И производители прогнозируют продолжение данного тренда.

Вообще вопрос используемых материалов в солнечной энергетике достаточно важен. Кремний, являющийся основой фотоэлектрики, – второй по распространенности на Земле элемент после кислорода. Но даже его солнечная энергетика старается экономить. Расход кремния для производства панелей сократился за десять лет с 16 до 6 г на ватт, что, однако, сопровождалось вышеназванным ростом их эффективности[51].

Помимо кремния, при производстве солнечных ячеек и модулей используется целый ряд материалов, в том числе редких и ценных. Одним из них является серебро. Примерно 20 г серебра используется в каждой панели из кристаллического кремния, а для одного гигаватта требуется уже 80 метрических тонн драгоценного металла[52]. Солнечная энергетика потребляет сегодня примерно 5,6 % добываемого в мире серебра, и при заявляемых перспективах роста рынок может столкнуться с существенным повышением спроса на этот металл[53].

вернуться

46

Fraunhofer Institute for Solar Energy Systems ISE, Photovoltaics Report, Freiburg, 24 October 2014, p. 6, www.ise.fraunhofer.de

вернуться

48

Technology Roadmap. Solar Photovoltaic Energy, 2014 Edition, IEA, p. 12.

вернуться

50

Technology Roadmap. Solar Photovoltaic Energy, 2014 Edition, IEA, p. 30.

вернуться

51

Fraunhofer Institute for Solar Energy Systems ISE, Photovoltaics Report, Freiburg, 24 October 2014, p. 7, www.ise.fraunhofer.de