Выбрать главу

Для неспециалиста должно быть понятно, почему волшебники НУ считали, что эта Вселенная создана в спешке и состоит из ущербных элементов.

Откуда же взялись все эти 113 элементов? Существовали ли они всегда, или появились по ходу развития Вселенной?

Судя по всему, в нашей Вселенной есть пять различных способов создания элементов:

1. Создайте новую Вселенную с помощью Большого Взрыва. В результате вы получите высокоэнергетическое («горячее») море фундаментальных частиц. Дождитесь, пока оно остынет (или просто возьмите то, которое сделали раньше…). Помимо обычной материи, вы, скорее всего, обнаружите множество экзотических объектов, например, крошечные черные дыры или магнитные монополи, но они очень быстро исчезнут, и по большей части останется только привычная для нас материя. В очень горячей Вселенной электромагнитные взаимодействия недостаточно сильны, чтобы преодолеть разрывы, но как только Вселенная станет достаточно холодной, фундаментальные частицы смогут объединяться благодаря электромагнитному притяжению. Единственный элемент, который непосредственно образуется таким способом — это водород, атом которого содержит один протон и один электрон. Правда, водорода у вас получится невероятно много: в нашей вселенной это пока что самый распространенный элемент, и почти весь он возник благодаря Большому Взрыву.

Протоны и электроны также могут образовать дейтерий (один электрон, один протон и один нейтрон) или тритий (один электрон, один протон и два нейтрона), но тритий радиоактивен, так что он избавляется от нейтронов и распадается до обычного водорода. Более стабильным продуктом является гелий (два электрона, два протона, два нейтрона) — по распространенности во Вселенной он находится на втором месте.

2. Пусть теперь гравитация разгуляется. Водород и гелий объединяются вместе и образуют звезды — те самые «топки», которые видели волшебники. В центре звезды давление достигает колоссальной величины, поэтому становятся возможными новые ядерные реакции — начинается ядерный синтез, при котором атомы сдавливаются с такой силой, что сливаются в новый атом большего размера. Таким путем сформировались многие известные нам элементы, от углерода, азота, кислорода до менее известного лития и бериллия и так далее до железа. Многие из этих элементов встречаются в составе живых существ, и наиболее важным в этом смысле является углерод. Благодаря своей уникальной электронной структуре, углерод — это единственный элемент, способный соединяться сам с собой и образовывать гигантские и сложные молекулы, без которых жизнь в известной нам форме была бы невозможна[26]. Как бы то ни было, смысл в том, что большая часть атомов внутри нас возникла внутри звезды. Как спела Джони Митчелл в Вудстоке[27]: «Мы звездная пыль». Ученым нравится цитировать эти слова, потому что это напоминает им о тех днях, когда они были молодыми.

3. Дождитесь, пока некоторые из звезд взорвутся. Взрыв может быть как сравнительно небольшим, или взрывом новой (звезды), так и довольно мощным — в этом случае звезда называется сверхновой. «Новизна» здесь состоит в том, что мы обычно не видим звезду до взрыва, а потом она неожиданно появляется. Происходит это не только из-за исчерпания ядерного топлива: водород и гелий, поддерживающие существование звезды, сливаются в более тяжелые элементы. Те, в свою очередь, становятся примесями, которые нарушают течение ядерной реакции. Даже для звезды мусор может стать серьезной проблемой. Физика этих первых солнц претерпевает изменения, а самые большие могут взорваться. При таком взрыве образуются тяжелые элементы вроде йода, тория, свинца, урана и радия. Такие звезды астрофизики относят к звездному населению II-го типа — это старые звезды, которые содержат небольшую долю тяжелых элементов.

4. Есть два вида сверхновых: второй тип как раз в избытке создает тяжелые элементы и приводит к возникновению звезд, которые относятся к населению I-го типа. Эти звезды намного моложе населения II-го типа[28]. Поскольку многие из образовавшихся элементов неустойчивы, их радиоактивный распад приводит к образованию множества других элементов. К таким «вторичным» элементам относится, к примеру, свинец.

вернуться

26

Кремний тоже обладает такой способностью, но в гораздо меньшей степени. Если же вам нужны экзотические формы жизни, следует подумать об организованных вихрях вблизи Солнца или странных квантовых скоплениях в межзвездной плазме или совершенно невероятных существах, построенных на основе нематериальных явлений вроде информации, мысли или рассказия. ДНК — это совсем другое дело, так как живые существа могут быть построены на основе других углеродных соединений. Уже сейчас мы можем делать это в лабораторных условиях, используя простые аналоги ДНК. См. также книгу Джека Коэна и Йена Стюарта «Evolving the Alien» (букв. «Как вывести инопланетянина» — прим. пер.).

вернуться

27

Если вы не понял, что мы имеем в виду, спросите у мамы или папы.

вернуться

28

В принципе должны существовать звезды, относящиеся к населению III-го типа. Эти звезды старше звезд II-го типа и состоят исключительно из водорода и гелия. Это объяснило бы наличие некоторых тяжелых элементов в населении II-го типа. Однако пока ни одной звезды III-го типа обнаружить не удалось. Тем не менее, в 2001 году была замечена целая группа объектов, которая могут оказаться представителями населения III — в двух красных пятнышках галактического кластера Abell-2218. Эти пятна представляют собой сильно увеличенные изображения одной и той же области космоса: раздвоение изображения и его увеличение происходит благодаря находящейся там гравитационной линзе — в противном случае мы бы никогда не увидели этих звезд. Стоит заметить, что недавно предложенная альтернативная теория позволяет вообще обойтись без звезд III-го типа. Вместо этого она предполагает, что тяжелые элементы появились в космосе вскоре после Большого Взрыва, еще до возникновения звезд. Так что, когда первые звезды закончили свое формирование, они уже были представителями населения II-го типа. Это противоречит основному тексту книги, но такова уж «ложь для детей».