Выбрать главу

Такой способ обработки-на-выживание особенно хорошо изучен для зрения. На рис. 4.1 показана частичная схема зрительной системы, которую удалось построить благодаря многим десятилетиям исследований на приматах – как обезьянах, так и людях[74]. Свет входит в глаз и образует картинку на сетчатке – светочувствительном слое ткани в глубине глаза. Нейроны сетчатки активируются и немедленно начинают соревнование местного уровня. Сигналы соперничают с соседями, более сильные подавляют более слабых. Особое преимущество получают те, что соответствуют резким зрительным контрастам.

Затем информация покидает глаз по зрительному нерву (кабелю из примерно 1,5 млн волокон) и попадает в таламус у основания мозга. Входящая зрительная информация направляется в определенную часть таламуса – выступ на его боку, который называется “латеральное коленчатое тело”. Там она снова процеживается сквозь соревновательное сито.

Пройдя латеральное коленчатое тело, информация отправляется по волокнам на первый уровень зрительной коры, в область затылочной доли мозга, которая называется первичной зрительной корой, или V1, где снова происходит вышеописанное соревнование нейронов.

Из V1 данные идут в хитросплетение высших зрительных областей – V2, V3, V4, MT, MST, TEO, TE и т. д. – в буквенный суп вместо названий. За последние полвека нейробиологи разметили зрительную кору во все более мелких подробностях, выделив десятки зон, в общей сложности покрывающих 60 т. о. коры, в основном в затылочной, височной и теменной долях. В каждой из этих зон размером с почтовую марку фрагменты информации постоянно соревнуются – нейроны тормозят своих соседей.

Зрительные области коры в целом организованы так, что сложность повышается по мере того, как данные текут от низкоуровневых зон в задней части мозга к зонам высоких уровней ближе к передней. К примеру, нейроны в V1, внизу иерархии, раскладывают зримый мир на контуры и цветовые пятна. Там происходит простое, поверхностное, но подробное разбиение видимого мира. Напротив, нейроны в TE, зоне намного выше в иерархии, чувствительны к сложным зрительным образам, таким как лица и руки. Они обрабатывают информацию о сущности объектов, а не о подробностях. И тем не менее данные текут не только вверх по иерархической лестнице. Сигналы могут идти обратно или вбок – в каких угодно направлениях по сети. Но и это еще не всё – вдобавок к сказанному выше кора также постоянно сообщается с глубинными структурами мозга, особенно с таламусом.

По мере того как информация течет по этой системе обработки, соревнование между сигналами все больше напоминает нечестный вариант НФЛ. Сильнейший входной сигнал побеждает не всегда. Другие источники могут обманом склонить чашу весов в свою пользу. Если посмотреть по сторонам, можно заметить самый яркий, самый быстрый объект, от которого исходит самый большой сигнал, но механизмы мозговой обработки необязательно берутся именно за него. Сигнал из лобной доли может быть перенаправлен обратно в зрительную кору, и фокус обработки сместится на менее очевидный стимул, который и победит в соревновании[75]. Когда выигрывает самый перцептивно значимый стимул снаружи, это называется восходящим (bottom-up) вниманием; когда сигнал изнутри дает взятку судье и состязание становится неравным, это называется нисходящим (top-down) вниманием. Но на самом деле это два разных аспекта одного и того же процесса.

В описании этих корковых разборок участвовал нейробиолог Роберт Десимон, на редкость уместно назвавший их предвзятым соревнованием[76]. Мне это видится одной из основных организационных истин о коре. Локальное торможение нейронами друг друга, из которого возникает соревнование, – главенствующий механизм в ее работе. Неслучайно эпилепсия – это заболевание коры[77]. Эпилептический припадок происходит, когда отказывает локальное торможение[78]. Сигналы, которые обычно сдерживают друг друга, внезапно начинают распространяться, и неконтролируемая активность захлестывает всю кору без разбору. Болезнь показывает, насколько важно торможение в коре и насколько катастрофичны последствия его сбоев.

вернуться

74

Существует огромное количество литературы, посвященной мозаике зрительных зон в коре головного мозга приматов. Над этим работали тысячи людей, в том числе и я. Приведу лишь несколько полезных источников, описывающих исследования как обезьян, так и людей. D. Felleman and D. Van Essen, “Distributed Hierarchical Processing in the Primate Visual Cortex,” Cerebral Cortex 1 (1991): 1–47; K. Grill-Spector and R. Malach, “The Human Visual Cortex,” Annual Review of Neuroscience 27 (2004): 649–77; P. Schiller and E. Tehovnik, Vision and the Visual System (Oxford, UK: Oxford University Press, 2015); L. G. Ungerleider and J. V. Haxby, “‘What’ and ‘Where’ in the Human Brain,” Current Opinion in Neurobiology 4 (1994): 157–65; D. C. Van Essen, J. W. Lewis, H. A. Drury, N. Hadjikhani, R. B. Tootell, M. Bakircioglu, and M. I. Miller, “Mapping Visual Cortex in Monkeys and Humans Using Surface-Based Atlases,” Vision Research 41 (2001): 1359–78; L. Wang, R. E. Mruczek, M. J. Arcaro, and S. Kastner, “Probabilistic Maps of Visual Topography in Human Cortex,” Cerebral Cortex 25 (2015): 3911–31.

вернуться

75

T. Moore and M. Zirnsak, “Neural Mechanisms of Selective Visual Attention,” Annual Review of Psychology 68 (2017): 47–72.

вернуться

76

R. Desimone and J. Duncan, “Neural Mechanisms of Selective Visual Attention,” Annual Review of Neuroscience 18 (1995): 193–222.

вернуться

77

Это не совсем точно – не только коры. Общеизвестна гиппокампальная эпилепсия. Об участии других структур см. работу: Nowack, W. J., & Theodoridis, G. C. (1991). The thalamocortical contribution to epilepsy. Bulletin of mathematical biology, 53 (4), 505–523. doi: 10.1007/BF02458626. – Прим. науч. ред.

вернуться

78

G. Alarcon and A. Valentin, Introduction to Epilepsy (Cambridge, UK: Cambridge University Press, 2012).