Выбрать главу

Первая сложность, с которой сталкивается философия космологии, – это уникальность Вселенной. Наиболее фундаментальное препятствие на пути ее научного изучения заключается в том, что мы можем обозревать только одну вселенную. Именно уникальность предмета изучения, его наличие только в единственном числе отличает космологию от других наук. Говоря точнее, согласно официально принятой в космологии концепции, уникальные начальные условия, приведшие к сегодняшнему состоянию Вселенной, были заданы еще до того, как известные нам физические законы начали управлять эволюцией Вселенной. Мы не можем изменить этих гипотетических начальных условий и посмотреть, что было бы, если бы эти условия были иными. Они даны нам в абсолютном и неизменном виде. Одним из главных последствий того, что Вселенная является уникальной, является то, что мы не можем экспериментировать с ней. Очевидно, что мы не можем создать вселенную заново и пронаблюдать ее развитие с теми же или другими начальными условиями. Мы не можем проводить научных экспериментов на этом основном объекте изучения космологов. Более того, ввиду уникальности наблюдаемого объекта мы не можем сравнить вселенную ни с какой другой Вселенной.

Например, законы наследственности Грегора Менделя, заложившего основу современной генетики, были выведены на основе экспериментов с двадцатью восемью тысячами растений гороха. Эти опыты были бы невозможны, если бы ученый имел только одно растение или только одну горошину.

К сожалению, подобно одной горошине, у нас есть только одна Вселенная, да и ту мы наблюдаем только частично. Поскольку мы не можем сравнить нашу вселенную ни с какой другой Вселенной, мы значительно ограничены в своих возможностях выводить определенные законы, которые были бы справедливы не только для нашей Вселенной, но и для группы подобных объектов; более того, мы не можем утверждать, что другие вселенные существуют.

Пример с горошиной достаточно наглядно иллюстрирует весьма интригующую мысль, что концепция «законов физики» неправомерна, когда она применяется только к одному объекту, и нет возможности подтвердить или опровергнуть эти законы путем сравнения данного объекта с ему подобными. Мы не можем научно установить «законов Вселенной», которые могли бы описывать целый класс подобных объектов, потому что мы не можем проверить ни один из таких законов, кроме как только на одном имеющиеся у нас объекте. Действительно, сама правомерность использования понятия «закон» должна быть поставлена под сомнение, если изучаемый объект существует

только в единственном числе. Главная идея физического закона заключается в том, что он должен быть верным в отношении группы объектов или явлений, имеющих сходные характеристики, при допущении некоторых вариаций. Эти различия могут быть результатом разных начальных условий систем, к которым приложены данные законы.

Научные эксперименты позволяют нам изменять начальные условия изучаемых систем. Это невозможно в случае космологии, потому что мы не можем перезапустить Вселенную в лаборатории.

Мы можем наблюдать законы физики локально, подтверждая, что на относительно малой шкале они одинаковы во всей Вселенной, однако нам трудно перенестись эти законы на более высокие уровни иерархии организации Вселенной. Например, Всемирный закон тяготения Ньютона[15] прекрасно работает на уровне нашей Солнечной системы, однако он не может быть с той же степенью определенности применен, когда мы изучаем орбитальные скорости звезд, вращающихся вокруг галактического центра. Эти скорости оказались значительно выше, чем в соответствии с законом Ньютона. Другим фактом, поставившим под сомнение применимость законов тяготения на межгалактическом уровне, оказалось несоответствие между массой видимого вещества и тем, что галактики остаются вместе в кластерах[16], а не разлетаются друг от друга.

Несмотря на то что современная космология объясняет эти явления присутствием скрытой массы, названной «темным веществом» – “dark matter”, существуют некоторые альтернативные теории, например модифицированная ньютоновская Динамика (MOND)[17]. Эти теории ставят под сомнение верность выкладок, лежащих в основе официальной космологии. Так, модель под названием «Лямбда холодное темное вещество» (Lambda Cold Dark Matter) в настоящее время (в 2007 г.) является ведущей теорией и подтверждается фактическими наблюдениями[18].

На более высоком уровне законами гравитации невозможно объяснить, что заставило космологов прийти к выводу, будто Вселенная расширяется, да еще и с ускорением. Ведь согласно законам гравитации Вселенная, наоборот, должна сжиматься, подчиняясь силе притяжения. Существует потребность в новых законах, которые описали бы скрытую энергию, названную «темной энергией» “dark energy”, которая отвечала бы за подобное расширение. (Иногда ее именуют «антигравитацией».)

В настоящее время космологи ведут споры, что представляет собой эта самая скрытая энергия. Некоторые считают, что она есть некая «космическая постоянная» (cosmological constant) или так называемая квинтэссенция (quintessence). Несмотря на то что подобные законы могли бы дать удовлетворительное объяснение упомянутым выше явлениям, они не могут быть проверены ни на каком другом объекте, кроме как на нашей Вселенной, что лишит их статуса универсальных законов ввиду того, что, как мы уже отмечали, Вселенная у нас одна, и поэтому нет возможности выявить закономерность тех или иных явлений для группы подобных объектов.

Мы можем предположить, что имеем дело с миллиардами «мини-вселенных», на которых мы могли бы протестировать законы, регулирующие локальную часть Вселенной, но такая «мини-Вселенная» ни в коей мере не является всей Вселенной. Поэтому и такая уловка не может быть состоятельной. Однако, проверяя мини-вселенные и убеждаясь, что законы физики в них работают одинаково, мы можем подтвердить основной вывод современной космологии, что Вселенная одинакова во всех своих частях и во всех направлениях. Тем не менее, убеждаясь в гомогенности Вселенной, мы не получаем ответа на вопрос, почему она одинакова во всех своих частях и во всех направлениях.

Наконец, концепция статистической вероятности в отношении Вселенной также проблематична, поскольку речь идет о единичном объекте. Проблемы возникают при попытке применить теорию вероятности к космологии в целом, тогда как именно эта концепция и лежит в основе современной космологической аргументации.

Например, мы говорим о низкой вероятности «тонкой настройки» Вселенной (fine tuning), то есть все известные физические константы имеют такие точные параметры, что во Вселенной могут создаваться условия не только для существования такой сложной формы организации материи, как жизнь, но и для существования самих атомов. Если бы эти константы были иными, атомы никогда не смогли бы сформироваться, звезды никогда не зажглись бы, термоядерные реакции в них не были бы возможны, а тем самым не могло бы появиться то разнообразие элементов во Вселенной, которое мы наблюдаем[19].

Таким образом, можно предположить, что если бы константы были иными, мы могли бы исследовать различные вероятности, сравнивая их между собой, но это не имело бы смысла, поскольку не могло бы быть доказано путем астрономических наблюдений. Как же можно говорить о различных вероятностях по отношению к развитию Вселенной, если Вселенная, которую мы можем наблюдать, присутствует только в единственном числе?

вернуться

15

Гравитация (сила тяготения) – одна из четырех известных фундаментальных взаимодействий в природе. Три другие включают в себя электромагнитные силы (electromagnetic force), силы слабого (weak nuclear force) и сильного (strong nuclear force) ядерного взаимодействия. Гравитация – самый слабый вид этих взаимодействий, однако она действует на огромных расстояниях и всегда в качестве притягивающей силы. Ньютоновские законы тяготения утверждают, что каждое тело во Вселенной притягивает другое тело с силой, прямо пропорциональной произведению их масс, и обратно пропорциональной квадрату расстояния между ними.

вернуться

16

Галактический кластер – суперструктура, состоящая из нескольких галактик, гравитационно связанных между собой.

вернуться

17

В физике модифицированная ньютоновская динамика – Modified Newtonian Dynamics (MOND) – теория, делающая попытку объяснить проблему скорости ротации галактических дисков без допущения существования скрытого вещества (dark matter). MOND был предложен Мордехаем Мильгромом (Mordehai Milgrom) в 1981 г. Теория моделирует наблюдаемую униформность скорости вращения звезд в галактических дисках. Наиболее успешной релятивистской версией теории MOND является разработка под названием «TeVeS» (Tensor-Vector-Scalar), представленная в 2004 г. (Bekenstein, Jacob D. Modified Gravity vs Dark Matter: Relativistc theory for MOND, JHEP Conference Proceedings, 2005)

вернуться

18

Lambda CDM – эта теория представляет собой основу современной модели «космологии Большого взрыва». Она призвана дать объяснение реликтовому микроволновому излучению (microwave background observations), а также наблюдаемым структурам кластеров галактик и теории «ускорения» расширения Вселенной (accelerating expansion), основанной на наблюдении сверхновых звезд определенного стандартного типа в удаленных галактиках – of the universe.

вернуться

19

Термоядерный синтез – процесс, происходящий внутри звезд. Облака газа под действием гравитации коллапсируют и образуют звезды. В их ядрах возникают исключительно высокие температура и давление, что создает условия для термоядерных реакций, в результате которых ядра атомов сливаются. Именно этот процесс отвечает за разнообразие элементов во Вселенной, которые входят в состав периодической системы Менделеева. Огромная энергия, выделяемая в результате термоядерной реакции, заставляет светиться звезды, в том числе и наше Солнце.