Выбрать главу

Одна из причин, мешающих людям признать прямое отношение, которое имеет теорема Геделя к нашему математическому мышлению, заключается в том, что в рамках обычной ее формулировки утверждение G ( P ) не представляет интереса с математической точки зрения. Мало того: оно еще и чрезвычайно сложно для понимания в качестве математического выражения. Соответственно, даже математики предпочитают не «связываться» с подобными выражениями. Однако, существует ряд примеров утверждений геделевского типа, которые легко доступны пониманию даже для тех, чье знакомство с математической терминологией и системой записи ограничивается рамками обычной арифметики.

Особенно впечатляющий пример попался мне на глаза уже после того, как была опубликована эта книга (а также «Тени разума»). Это произошло на лекции Дэна Исааксона в 1996 году. Речь шла об известной теореме Гудстейна [14]. Данный пример кажется мне настолько поучительным, что я хотел бы рассмотреть его здесь целиком, дабы читатель имел возможность непосредственно познакомиться с теоремами геделевского типа [15].

Чтобы понять суть этой теоремы, рассмотрим любое целое положительное число, скажем, 581. Для начала мы представим его в виде суммы различных степеней числа 2:

581 = 2 9+ 2 6+ 2 2+ 1.

(Такая процедура применяется для формирования двоичного представления числа 581, а именно, приведения его к виду 1001000101, где единицы соответствуют тем степеням двойки, которые присутствуют в таком представлении, а нули — тем степеням, которых нет.) Далее можно заметить, что «показатели» в этом выражении — т. е. 9,6 и 2 — могут быть, в свою очередь, представлены аналогичным образом (9 = 2 3+ 1, 6 = 2 2+ 2 1, 2 = 2 1); и тогда мы получим (вспоминая, что 2 1= 2)

Здесь все еще есть показатель больший, чем двойка — в данном случае это «3», — для которого тоже можно написать разложение

3 = 2 1+ 1, так что в конце концов мы будем иметь

А теперь мы подвергнем это выражение последовательности чередующихся простых операций, которые будут

(а) увеличивать «основание» на единицу,

(б) вычитать единицу.

Под «основанием» здесь понимается просто число «2», фигурирующее в исходном выражении, но мы можем сделать то же самое и с большими основаниями: 3, 4, 5, 6…..

вернуться

14

Goodstein, R. L., On the restricted ordinal theorem. Journal of Symbolic Logic, 9 (1944), 33–41.

вернуться

15

См. также Penrose, R., On understanding understanding. International Studies in the Philosophy of Science, 11(1997), 7-20.