Давайте посмотрим, что произойдет при применении операции (а) к последнему разложению числа 581, в результате которой двойки становятся тройками:
(что дает — если выписать его в обычной форме — сороказначное число, начинающееся с 133027946…). После этого мы применяем (б) и получаем
(т. е. по-прежнему сорокозначное число, начинающееся с 133027946…). Далее мы выполняем (а) еще раз и получаем
(это уже значительно большее число, состоящее из 618 знаков, которое начинается с 12926802…). Следующая операция — вычитание единицы — приводит к выражению
(где тройки получаются по той же причине, что и девятки в обычной десятичной записи, когда мы получаем 9999, вычитая 1 из 10 000). После чего операция (а) дает нам
(число, которое имеет 10923 знака и начинается с 1274…). Обратите внимание, что коэффициенты «3», которые возникают при этом, с необходимостью меньше, чем основание (в данном случае 5), и не изменяются с возрастанием последнего. Применяя (б) вновь, имеем число
над которым мы опять производим последовательно действия (а), (б), (а), (б),… и т. д., насколько возможно. Вполне естественно предположить, что этот процесс никогда не завершится, потому что каждый раз мы будем получать все бо́льшие и бо́льшие числа. Однако это не так: как следует из поразительной теоремы Гудстейна, независимо от величины исходного числа ( 581 в нашем примере), мы в конце концов получим нуль !
Кажется невероятным, но это так. А чтобы в это поверить, я рекомендовал бы читателю самостоятельно проделать вышеописанную процедуру, для начала — с числом «3» (где мы раскладываем тройку как 2 1+1, что дает последовательность 4, 3,4, 2, 1, 0); а затем — что более важно — попробовать то же самое с «4» (при этом стартовое разложение в виде 4 = 2 2приводит к вполне закономерно возрастающему ряду 4, 27, 26, 42, 41, 61, 60, 84…, который доходит до числа из 121210 695-ти знаков, после чего уменьшается вплоть до нуля!).
Но что кажется еще более удивительным: теорема Гудстейна фактически является теоремой Геделя для той самой процедуры, которую мы изучали в школе под названием математической индукции, как было доказано в свое время JI.Кирби и Дж. Парисом [16]. Как вы, должно быть, помните, математическая индукция позволяет установить справедливость некоторого математического утверждения S ( n ) для n = 1, 2, 3, 4, 5… Доказательство проводится в два этапа: сначала нужно проверить справедливость S ( l ), а затем показать, что, если верно S ( n ), то должно выполняться и S ( n + 1 ). Приняв процедуру математической индукции за Р , Кирби и Парис доказали, что тогда G ( P ) может иметь смысл теоремы Гудстейна.
Следовательно, если мы считаем процедуру математической индукции достоверной (с чем едва ли можно не согласиться), то мы должны верить и в справедливость теоремы Гудстейна — несмотря на то, что при помощи одной лишь математической индукции доказать ее невозможно.
«Недоказуемость» теоремы Гудстейна, понимаемая в этом смысле, вряд ли может помешать нам убедиться в ее фактической справедливости. Наши интуитивные представления позволяют нам расширить действие тех ограниченных приемов «доказательства», которыми мы воспользовались ранее. В действительности сам Гудстейн доказал свою теорему, прибегнув к разновидности метода, который называется «трансфинитной индукцией». В контексте нашего изложения этот метод сводится к систематизации интуитивных ощущений, которые возникают в процессе знакомства с «причиной», по которой теорема Гудстейна и в самом деле верна. Эти ощущения могут родиться практически целиком за счет изучения некоторого числа частных случаев указанной теоремы. И тогда станет видно, как скромная незаметная операция (б) безжалостно «отщипывает» по кусочку от огромной башни «показателей» до тех пор, пока она не начинает постепенно таять и полностью исчезает, — хотя бы на это ушло и невообразимо большое число шагов.
16
Accessible independence results for Peano arithmetic.Bulletin of the London Mathematical Society, 14 A982), 285-93.