Быть может, лучше пойти поглазеть на пожар в соседском доме?
Часть вторая
О других вещах
Глава 11
Забудьте об этом!
Недавно[8] я просматривал новый учебник по биологии («Биологическая наука»: взгляд на жизнь, написанный коллективом именитых авторов и опубликованный в 1963 году). Мне он показался очень занимательным.
К несчастью, вначале я прочел предисловие (да, я принадлежу именно к такой категории людей), которое повергло меня в глубочайшее уныние. Позвольте мне привести выдержки из первых двух параграфов:
«С каждым новым поколением наш багаж научных знаний увеличивается в 5 раз… В настоящее время имеется в 4 раза больше важнейших знаний по биологии, чем в 1930 году, и в 16 раз больше, чем в 1900 году. При существующей скорости накопления знаний к 2000 году вводный курс биологии будет содержать в 100 раз больше информации, чем в начале века».
Представляете, какое это произвело на меня впечатление? Всю свою сознательную жизнь я стремился идти в ногу с наукой, а в отдельные моменты считал, что мне это удается, причем весьма неплохо.
Но потом мне на глаза попадается нечто подобное, и мир начинает рушиться! Оказывается, я вовсе не иду в ногу с наукой. Хуже того, я от нее безнадежно отстал! И с каждым днем отстаю все больше!
Наконец, я перестаю жалеть себя, неспособного поспевать за прогрессом, и начинаю думать о жизни вообще. Что происходит с Homo sapiens? Похоже, человечество не собирается отказываться от привычки приукрашивать факты и манипулировать ими. В недалеком будущем нам всем грозит смерть от злокачественного образования. Клетки нашего мозга начнут одна за другой отмирать от несварения бесчисленных фактов и концепций, а те, что уцелеют, окажутся погребенными под обломками информационных взрывов.
Но затем мне повезло. На следующий день после «Биологической науки» мне на глаза попалась старая книга под названием «Арифметика Пайка». Заглавие на титульном листе было куда более информативным (в те дни к заголовкам относились намного серьезнее). Оно гласило: «Новая и полная система арифметики, составленная для использования гражданами Соединенных Штатов Николасом Пайком». Впервые эта книга была опубликована в 1785 году, но у меня было ее второе издание, расширенное и дополненное, увидевшее свет в 1797 году.
В этой книге оказалось более 500 страниц, исписанных мелким шрифтом, без иллюстраций или диаграмм. Вся она была посвящена арифметике, лишь небольшие разделы в самом конце являлись введением в алгебру и геометрию.
Я был чрезвычайно заинтересован. Все-таки у меня есть двое детей школьного возраста, да и сам я когда-то учился в школе и знаю, что представляют собой книги по арифметике. Во-первых, все они не такие объемные, а во-вторых, в них не содержится и пятой части словесного материала, имеющегося у Пайка.
Возможно, мы что-то упустили?
Я внимательно проштудировал Пайка и теперь не сомневаюсь, что мы действительно кое-что обходим молчанием. Но в этом нет ничего плохого. Беда в том, что мы умалчиваем недостаточно.
Так, на странице 19 Пайк увлеченно перечисляет римские числительные, доведя их перечень до полумиллиона.
Начиная со времен Средневековья в Европе используются арабские цифры, с их появлением римские лишились своего значения. А до тех пор кто знает, сколько бумаги приходилось изводить, чтобы довести до сведения желающих методы расчетов с использованием римских цифр? Собственно говоря, с переходом на другие цифры методы расчетов остались прежними, только выполнять их стало гораздо легче, и объяснений требуется только сотая часть. Знания не утрачены, в прошлом остались лишь неэффективные правила.
Но спустя 500 лет после заслуженной смерти римских числительных Пайк снова включает их в учебное пособие и ожидает, что читатели смогут переводить их в арабские и обратно, хотя не дает никаких инструкций о том, как ими манипулировать. Между прочим, почти через 200 лет после Пайка римские числительные все еще изучаются! Моя маленькая дочь сейчас как раз занимается этим.
Но зачем? Конечно, римские цифры все еще встречаются на некоторых указателях, могильных плитах, на циферблатах часов, они иногда украшают фасады зданий, но ведь в этом нет никакой необходимости! Это делается для того, чтобы произвести впечатление, придать больше значимости, солидности, античный колорит. И больше ничего.
Осмелюсь предположить, что существуют сентиментальные личности, искренне уверенные, что знание римских числительных является своеобразными воротами в мир высокой культуры, а умение обращаться с ними сродни прикосновению к руинам Парфенона, но меня такой подход чрезвычайно раздражает.
Римские числительные? Забудьте о них. Лучше освободите место для новых, ценных знаний.
Но разве мы можем позволить себе забывать? А почему бы и нет? Мы уже многое забыли, даже больше, чем вы думаете. Наша беда не в забывчивости, а в том, что мы помним слишком хорошо. Мы забываем недостаточно много.
Значительная часть книги Пайка посвящена еще не полностью забытым нами материалам. Поэтому современные пособия по арифметике намного короче. Если бы мы могли забывать раз и навсегда, арифметика, которую сейчас изучают наши дети, стала бы еще короче.
Приведу пример. В книге Пайка много всевозможных таблиц, которыми, как он считает, читатель обязан уметь пользоваться. Пятая таблица озаглавлена «Меры сукна».
Знаете ли вы, что 21/2 дюйма составляют ноготь? Нет? Так знайте. 16 ногтей — это ярд, а 12 — локоть.
Но это еще не все! 12 ногтей (27 дюймов) — это только фламандский локоть. 20 ногтей (45 дюймов) образуют английский локоть, а 24 ногтя (54 дюйма) — французский. И это еще не все! 16 ногтей плюс 11/5 дюйма (371/5 дюйма) дадут шотландский локоть.
Итак, если вы собираетесь заниматься бизнесом, связанным с импортом или экспортом сукна, у вас имеется только два выхода: первый — изучить все эти локти, второй — найти способ от них избавиться.
Оказывается, каждый товар измеряется своими особыми мерами. Можно продать или купить фиркин масла (8–9 галлонов), панч чернослива, стоун мяса и т. д. Каждое из этих количеств может быть выражено некоторым числом фунтов (имеются в виду фунты «эвердьюпойс»; ведь существуют еще тройские и аптекарские фунты, а также ряд других). Пайк не обделяет своим вниманием ни одну из единиц.
Быть может, вам необходимо измерить расстояние? Нет ничего проще! Знаете ли вы, что 792/100 дюйма составляют 1 линк, 25 линков — это 1 поль, 4 поля — 1 чейн, 10 чейнов — 1 фурлонг, а 8 фурлонгов — 1 милю.
Вас интересует возможность измерить количество пива или эля? Тогда придется запомнить, что 2 пинты составляют кварту, а 4 кварты — галлон.
Однако в колониальные времена галлон пива или эля был «детской» мерой. Следовало еще научиться выражать «мужское» количество. Что ж, 8 галлонов — это фиркин, но «фиркин эля в Лондоне». Чтобы получить «фиркин пива в Лондоне», потребуется 9 галлонов. Промежуточное количество — 81/2 галлона — обозначается «фиркин эля или пива». Эта мера действовала преимущественно за пределами Лондона, где провинциалы проявляли меньше щепетильности при определении различия между этими напитками.
Давайте продолжим: 2 фиркина (думаю, что речь идет о промежуточных величинах, хотя и неуверен) составляют килдеркин, а 2 килдеркина — это уже баррель. 11/2 барреля — это 1 хогзхед, 2 барреля — панчен (бочка), а 3 барреля — бат.
Запомнили?
Давайте попробуем разобраться с мерами сыпучих тел.
2 пинты дают кварту, а 2 кварты — поттл, причем не боттл (bottle — бутылка), а именно поттл. И не говорите, что вы в жизни не слышали ни о чем подобном!
2 поттла составляют галлон, а 2 галлона — пек. 4 пека — это уже бушель. (Передохните, и двинемся дальше.) 2 бушеля — это страйк, 2 страйка — коум, 2 коума — квартер, а 4 квартера — челдрон (хотя в требовательном городе Лондоне челдрон — это 41/2 квартера). И наконец, 5 квартеров составляют вес, а 2 веса — ласт.
Поверьте, я ничего не придумал. Все это приведено у Пайка на странице 48.
Интересно, неужели дети, изучавшие арифметику в 1797 году, должны были все это запоминать? Полагаю, что да. Ведь дальше Пайк уделил большое внимание процессу сложения. Причем сложного сложения.
Дело в том, что та операция, которую мы все считаем сложением, по сути, является простым сложением. Сложное сложение — нечто отличное. Попробую объяснить, что это такое.