Инвариантность интервала — просто математическая запись основных положений теории — принцип относительности плюс принцип постоянства скорости света. Как именно доказывается инвариантность интервала, обсуждать не стоит, хотя это и довольно просто. Это вопрос математики, а математика, как говорил А. Н. Крылов, подобно мельнице, перемалывает все, что вы засыплете. Нас же интересует в первую очередь «засыпка».
Из инвариантности интервала немедленно следуют преобразования Лоренца — формулы, позволяющие перейти от одной инерциальной системы отсчета к другой.
Это тоже математика. Опустим вывод преобразования Лоренца и даже скрепя сердце промолчим об удивительно изящной математической трактовке этих преобразований, принадлежащей Минковскому. В конце концов все это относится к работе мельницы, а нам с лихвой хватит попытки разобраться в основных физических выводах теории. Посему все формулы будем принимать на веру.
1. Рассмотрим две инерциальные системы отсчета K и K1, оси которых по направлениям совпадают.
Пусть относительная скорость движения этих систем v направлена вдоль осей x и x1. Тогда, зная время и координаты любого события в одной системе отсчета, можем найти время и координаты этого же события в другой системе. А именно:
Как видите, написаны формулы перехода от штрихованной системы к нештрихованной[69].
Из рисунка видно, что рассматривается случай, когда скорость системы K1 в системе K равна +v.
Теперь, зная координаты и время в системе K1 и использовав наши формулы, сразу можем найти соответствующие координаты и время в системе K.
Чтобы проделать обратный переход, нужно разрешить наши уравнения относительно x1 и t1 (как говорится, «уединить» x1 и t1). Это очень легко сделать чисто формально, но еще проще вспомнить, что ввиду равноправия инерциальных систем формулы перехода от K к K1 и от K1 к K должны иметь тождественный вид.
Учитывая, что скорость движения K относительно K1 равна — v, сразу напишем:
Мы рассмотрели сравнительно простой случай, когда относительная скорость движения систем K к K1 совпадает по направлению с осями x и x1.
В общем случае формулы перехода, естественно, усложняются, но все принципиальные отличия теории Эйнштейна от классической физики полностью выявлены и в частном случае.
Сразу видно, как существенно отличаются преобразования Лоренца от аналогичного преобразования Галилея в классической механике. Однако, кроме различия, есть и значительное сходство.
По этому поводу можно высказать совершенно общее утверждение. Заранее ясно, что в теории Эйнштейна как предельный случай должна заключаться классическая механика. Механика Ньютона многократно оправдывалась при проверке на опыте, и никакая разумная новая теория не может просто ее отбросить. От подобных неприятностей классическую механику метод принципов Ньютона страхует навечно.
Как бы ни изменились принципиальные положения, что бы ни оказалось в дальнейшем, но когда скорости тел малы, любая теория должна давать те же или, точнее, почти те же результаты, что и механика Ньютона. Как приближение к истине законы Ньютона останутся навсегда.
Все, что сказано сейчас о механике Ньютона, можно дословно повторить по отношению к специальной теории относительности. Дальнейшее развитие науки может внести любые изменения. Может произойти все что угодно, но хотя бы как приближение к истине теория Эйнштейна останется в науке навсегда.
Вернемся, однако, к конкретному вопросу. Как можно увидеть, что теория Эйнштейна включает в себя механику Ньютона? В этом легко, например, убедиться при анализе любого вывода теории. Ограничимся только одним примером. Когда v/c << 1 можно пренебречь членами (v/c)2 и (v2/c2) и формулы преобразования Лоренца переходят в хорошо известные классические формулы преобразования Галилея:
69
Стоит обратить внимание на то, что формулы Лоренца имеют смысл только, если относительная скорость систем отсчета