Выбрать главу

В механике Эйнштейна скорость света в вакууме представляет барьер, через который невозможно перебраться.

Глава XIV,

в которой обсуждаются два вывода теории относительности, вызывающие обычно максимальное недоумение
Эйнштейн (время, длина)

Как измерять длину движущихся тел, мы уже договорились в III главе. Напомним: «Длина движущегося тела есть расстояние между одновременно отмеченными положениями его начальной и конечной точек».

В классической физике длина движущегося тела, определенная таким образом, совпадала с длиной неподвижного тела, и все было хорошо. Еще и еще раз напомним:

1. До Эйнштейна вообще никто не задумывался, «как определяется длина движущихся тел». Но, по сути дела, каждый раз, измеряя длину или говоря о ней, молчаливо подразумевали, что она определяется именно так, как сказано выше.

2. Совпадение или несовпадение длин покоящегося и движущегося тела — это вопрос опыта, и никак нельзя утверждать заранее, что они должны совпадать.

Относительность длины и лоренцово сокращение.

Не следует навязывать природе наши взгляды и желания. В данной конкретной системе отсчета, где проводятся изменения, стержень неподвижный и стержень движущийся находятся в разных физических условиях, и нет никаких оснований ожидать, что длина не изменяется при движении. Так думали раньше, бессознательно обобщая эксперименты. Ведь в обычных опытах исключительно трудно наблюдать различие в длинах движущегося и неподвижного предмета, ибо достижимые скорости материальных тел неизмеримо меньше скорости света. Поэтому и не наблюдалось никакого изменения длины, а отсюда уверенность, что длина предмета абсолютна и неизменна независимо от того, из какой системы отсчета ее определяют.

Но… самый непосредственный анализ преобразований Лоренца показывает, что длина — величина относительная.

Действительно, длина стержня, движущегося со скоростью v, сокращается в направлении движения и определяется выражением:

где l0 — длина стержня, когда он находится в состоянии покоя[71], то есть длина, измеренная в той системе отсчета, в которой стержень покоится. Этот эффект и называется лоренцовым сокращением длины[72].

Для космической ракеты — спутника Солнца — наблюдаемое с Земли сокращение длины равно:

Иначе говоря, ракета укоротилась примерно на 7 стомиллионных долей процента!

Конечно, нет ни малейшей возможности заметить такое сокращение. А космические ракеты — бесспорные чемпионы скорости, если говорить о макроскопических телах.

Поэтому не должно особенно удивлять, что длина тела считалась абсолютной величиной. Иное дело, когда скорости близки к световой. Но пока не начали исследовать элементарные частицы, с такими скоростями не сталкивались.

Вот, собственно, все, что следовало сказать о понятии длины в теории относительности. Однако релятивистская постановка проблемы настолько непривычна, что стоит специально обратить внимание на вопрос, который очень часто приходится слышать: сокращается ли длина на самом деле, или же лоренцово сокращение только кажущееся?

Этот вопрос связан с непониманием существа дела.

Если сказать, что лоренцово сокращение действительно объективно и реально, — это будет правильно. Но тогда может сложиться ошибочное представление, что существует какая-то выделенная система отсчета, в которой все тела имеют максимальную «истинную» длину, а во всех остальных системах она сокращается[73]. Ничего подобного, конечно, нет.

Лоренцово сокращение длины связано только с тем, что длина — относительная величина, зависящая от того, из какой системы отсчета ее определяют.

Спрашивать, действительно ли лоренцово сокращение, это то же самое, что спрашивать, движется ли в действительности измеряемый стержень?

Но если последний вопрос не вызывает недоумений, ибо относительность скорости очень привычна, то относительность длины часто пугает и трудно воспринимается.

По существу же, все дело в том, что очень тяжело менять привычки.

Иногда можно услышать даже, что, утверждая относительность длины, физики противоречат философскому материализму. Подобные заявления продиктованы непониманием как физики, так и философии и не заслуживали бы особого внимания, если бы не отражали все то же нежелание людей изменять привычные наглядные представления. К сожалению, однако, мир устроен таким образом, что приходится приложить известные умственные усилия, чтобы понять его структуру. Последнее философское замечание еще более относится к определению понятия времени.

вернуться

71

Вывод этого соотношения настолько прост, что его можно продемонстрировать.

Чтобы найти длину движущегося стержня, наблюдатель должен одновременно зафиксировать начальную и концевую точки x1 и x2. Тогда (x2 – x1) и есть длина стержня l.

Чтобы найти связь между l и l0, следует, используя преобразования Лоренца, связать координаты (x11 и x21) начальной и концевой точек в той системе, где он покоится, с соответствующими координатами x1 и x2, определенными в той системе отсчета, где он движется:

Обратим внимание: в правой формуле стоит одно и то же время t1.

Это соответствует тому, что при определении длины движущегося стержня нужно одновременно фиксировать его начальную и концевую точки. Вычитая из нижней формулы верхнюю, получим:

Но (x21 – x11) = l0 — длина стержня, определенная в системе, где он покоится. А (x2 – x1) = l — длина движущегося стержня.

Таким образом

вернуться

72

Это название принято, поскольку в теории Лоренца (о ней упоминалось в главе XI) предполагалось, что длина тела, движущегося относительно эфира, сокращается; причем формула для сокращения такая же, как в теории относительности. Но физическое содержание формулы сокращения длины у Лоренца (как и всей его теории) совершенно отлично от содержания теории Эйнштейна. Например, в теории Лоренца имеет смысл говорить об абсолютной длине l0 — длине тела, неподвижного относительно эфира.

вернуться

73

Именно эту идею и развивал Лоренц в своей теории, полагая, что движение тел относительно неувлекаемого эфира вызывает сокращение длины.