Но ведь вся задача сформулирована совершенно симметрично, и ракета № 1 ничем не лучше ракеты № 2. Поэтому ясно, что в нашем рассуждении можно спокойно переменить номера ракет. И с теми же основаниями наблюдатель в ракете № 1 будет утверждать, что отстают часы ракеты № 2.
Кто же прав?
Оба.
Чтобы это несколько необычное утверждение стало понятнее, надо только уточнить, что подразумевает наблюдатель ракеты № 1, определяя время отправления n-го сигнала с ракеты № 2 по своим часам.
Это время по самому своему смыслу есть не что иное, как показания часов, синхронных с часами ракеты № 1 и находящихся в той точке, где в момент отправления n-го сигнала была ракета № 2.
По сравнению с показаниями этих часов часы ракеты № 2 будут показывать меньшее время — отставать. Точно так же, утверждая, что отстают часы ракеты № 1, наблюдатель в ракете № 2 мысленно «вешает» часы, синхронные со своими, в точку, где находится ракета № 1.
Мы снова приходим к старому выводу. Отстают те часы, которые сравниваются с показаниями нескольких синхронных между собой часов другой инерциальной системы.
В таком виде это заявление выглядит несколько формально, но по смыслу оно совпадает с основным утверждением об измерении промежутка времени между двумя событиями. Интервал времени минимален в той системе отсчета, где события произошли в одной точке[78].
Однако, честно признаемся, изменение ритма часов воспринимается тяжелее, чем лоренцово сокращение длины. Это вызвано, вероятно, отчасти тем, что вообще труднее воспринять понятие времени, а отчасти «необратимостью» эффекта. Что именно подразумевается под «необратимостью», лучше всего пояснить, вспомнив о длине.
Разгоним стержень относительно какой-либо инерциальной системы до скорости, близкой к скорости света, а затем затормозим его. Предположим, что при малых ускорениях по-прежнему справедливы формулы специальной теории относительности. Тогда наблюдатель, покоящийся в нашей системе, измеряя в процессе движения длину стержня, должен получить примерно такой график.
В начальный момент длина стержня равна nl0, затем с ростом скорости она постепенно уменьшается. Когда скорость достигает максимального значения v и стержень двигается по инерции, длина его остается некоторое время постоянной. Потом по мере торможения она монотонно растет, возвращаясь к прежнему значению l0. После окончания движения стержень «забывает», что он двигался. Его длина остается неизменной.
Со временем положение иное.
Если «разогнать» часы С (например, поставив в некую фантастическую ракету) и заставить их некоторое время двигаться со скоростью v, а потом затормозить, то после остановки они не будут показывать то время, что часы В, синхронные с А и находящиеся «на остановке».
Часы С отстанут от В. В этом случае обратимой величиной оказывается ритм часов. После путешествия часы С будут идти так же, как до полета (синхронно с А и В). Но время путешествия, которое они отмерят, будет меньше времени, измеренного по часам А и В. При этом мы снова предположим, что, если часы двигались с не очень большим ускорением, можно с хорошей степенью точности определять измерение их ритма в каждый данный момент, используя формулы специальной теории. То есть:
Вообще-то как задача определения длины ускоренно движущегося тела, так и вопрос о ходе времени на этом теле не могут быть решены с помощью специальной теории относительности.
Специальная теория рассматривает только инерциальные системы, и поэтому в наших рассуждениях выводы специальной теории, строго говоря, незаконно распространялись на более общие случаи.
Однако общепринято считать: если ускорения в некоем определенном смысле малы[79], это можно делать.
Впрочем, некоторые ученые возражают против такого вывода, считая использование специальной теории незаконным. Но мы будем слепо следовать за большинством.
Еще раз повторим: сейчас обсуждается проблема, строго говоря, «не подсудная» специальной теории. Полное решение вопроса может быть получено только в общей теории относительности.
78
Математический вывод лоренцова сокращения времени так же, как и длины, очень прост. Рассмотрим две системы отсчета,
В системе, где вспышки произошли в одной точке, квадрат интервала между вспышками равен
Поскольку интервал между событиями остается неизменным при переходе от одной системы к другой, то
но так как Δ
79
Эта фраза сформулирована так учено потому, что мы не в состоянии углубляться в детальный анализ, а слова «ускорения малы» (или «велики») сами по себе еще ничего не значат. Необходимо дать критерий, указать точное математическое условие малости ускорений. Критерия мы приводить не будем, но, имея его в виду, осторожно пишем: ускорения малы «в некоем определенном смысле».