6. 2. Символы, используемые в уравнениях
Для выражения величин в уравнениях модели нужно выбрать символы, которые имели бы наиболее мнемонический характер, то есть напоминали бы нам общепринятую терминологию, связанную с повседневной практической деятельностью. Отчасти для того, чтобы согласовать символы с общепринятыми, отчасти в связи с ограниченным числом символов, которые могут быть напечатаны выходными устройствами цифровых вычислительных машин, мы будем пользоваться для обозначения переменных и констант в модели только группами прописных букв английского алфавита и арабскими цифрами. Так, численность работников предприятия А будет обозначаться EPLTA; наличие товаров на складе № 5 может быть обозначено INVW5; наличие товаров, необходимое в звене розничной торговли, могло бы быть обозначено IDR. Темп выпуска готовой продукции предприятием можно обозначить MOF.
В силу ограниченных эксплуатационных возможностей печатающих устройств вычислительных машин мы не будем пользоваться ни подстрочными, ни надстрочными индексами.
6. 3. Обозначение времени в уравнениях
Следует договориться об обозначении времени, чтобы можно было установить тот момент, к которому относятся количественные значения величин в уравнениях. В литературе, посвященной данным вопросам, время часто обозначается небольшими подстрочными индексами. Так как это не совсем согласуется с возможностями пишущей машинки и вовсе не соответствует возможностям печатающих устройств многих вычислительных машин, то для обозначения времени мы будем пользоваться одной или двумя прописными буквами, следующими за обозначением переменной и отделенными от него точкой.
Так, в предыдущих примерах уровень работающих в момент времени J будет EPLTA.J, а в момент К — EPLTA.K. Следует отметить, что для обозначения времени используется одна буква, поскольку значения уровней определяются только для фиксированных моментов времени — соответственно J или К. Уровни (и вспомогательные переменные, которые будут рассмотрены ниже) будут иметь обозначение времени одной буквой.
Темпы, напротив, будут отмечаться двумя буквами. Например, темп выпуска готовой продукции, имеющий место в интервале времени от J до К, обозначается MOF.JK, а темп, который будет иметь место в течение последующего интервала, обозначается MOF.KL[32].
Константы не будут иметь обозначения времени, так как они не изменяются от одного интервала времени к другому. Постоянное запаздывание, связанное с доставкой товаров в розничную торговую сеть, может быть обозначено DSR.
6. 4. Классы уравнений
Уравнения уровней и темпов уже рассматривались при описании основных свойств используемой ниже структуры динамической модели.
Были перечислены и другие типы уравнений, которыми удобно пользоваться, но которые не вносят в модель новых динамических характеристик. Это вспомогательные и дополнительные уравнения и уравнения начальных условий. Рассмотрим форму этих уравнений.
Уравнения уровней. Уровни представляют собой переменное по величине содержимое резервуаров в системе. Как уже отмечалось, они существовали бы и в том случае, если бы система была приведена в состояние покоя и все потоки в ней остановились бы. Значения уровней определяются заново для каждого из последующих интервалов решений; предполагается, что между моментами времени, для которых решаются уравнения, уровни изменяются с постоянной скоростью, но их значения в этом промежутке времени не вычисляются.
Вот пример типичного уравнения уровня:
.
Символы обозначают следующие переменные:
IAR — фактический запас товаров в розничной торговой сети (единицы), где слово «фактический» употребляется в отличие от «требуемый» и других понятий о запасе товаров;
DT — приращение времени (недели), интервал времени между решениями системы уравнений;
SRR — поставки товаров в розничную торговую сеть (единицы в неделю);
SSR — продажа товаров в розничной торговой сети (единицы в неделю)[33].
Обозначение «6–1, L» справа указывает, что данное уравнение является первым в главе 6 (всем уравнениям присвоен цифровой шифр) и что оно описывает уровень («L»)[34].
Уравнение устанавливает прямую количественную зависимость, согласно которой запас товаров 1AR в момент времени К будет равен предыдущему значению IAR.J плюс произведение разности между темпами входящего потока SRR.JK и исходящего потока SSR.JK на продолжительность интервала времени DT, в течение которого существуют эти темпы. Короче говоря, то, что есть в торговой сети, равно тому, что в ней было, плюс то, что поступило, и минус то, что было из нее отдано[35].
Следует заметить, что все члены уравнения имеют размерность «единицы» товаров. В скобках правой части уравнения «единицы» получаются при умножении времени, выраженного в долях недели, на темпы потока в единицах в неделю.
Темпы потока всегда измеряются числом единиц за какой-либо интервал времени, такой, как день, неделя или месяц, но не в периодах, кратных интервалу решений DT; единицы времени для темпов и интервала DT должны быть одними и теми же, например недели или месяцы. Уравнение сохраняет силу и не зависит от интервала решений DT, пока интервал не превышает максимальной величины, которая будет рассмотрена ниже. При изменении интервала решений не требуется вносить изменения в формулировку уравнения или в какие-либо входящие в него константы. Вводя интервал DT непосредственно в уравнение мы можем использовать в модели те же общепринятые единицы измерения времени, что и в реальной системе.
Сравнения уровней не зависят одно от другого; решение каждого из них зависит только от информации, касающейся предшествующего момента времени. Поэтому порядок решения уравнений уровней не имеет никакого значения. При решении какого-либо уравнения уровня в момент времени К не используется никакой информации из других уравнений уровней, решаемых для того же момента времени. Уровень в момент К зависит от его предыдущего значения в момент У и от темпов потока в течение интервала
Переменные, относимые к классу уровней, могут иметь такие единицы измерения, как «единицы в неделю», так что поначалу может показаться, что мы имеем дело с темпами. Тогда следует применить испытание системы приведением ее в состояние покоя, как это было сделано в разделе 5.1, где мы установили, что средние темпы представляют собой по существу уровни, а не темпы.
Уравнения темпов (функции решений). Уравнения темпов определяют темпы потоков между уровнями в системе. Уравнения темпов являются «функциями решений», что будет подробно рассмотрено ниже, в главе 9.
Уравнение темпа решается на основе данных о существующих в настоящее время величинах уровней в системе, которые часто включают в себя уровень, из которого исходит поток с данным темпом, и тот уровень, к которому он направлен. В свою очередь темпы потоков являются причиной изменений в уровнях. Уравнения темпов могут по типу решений относиться к «явным» или «неявным»[36]. Какая-либо разница в структуре самих уравнений при этом отсутствует.
32
Следует отметить, что величины, относящиеся к моментам времени более ранним, чем J, в данном исследовании не используются, и в этом нет необходимости, хотя обычно при решении многих систем разностных уравнений поступают иначе, сохраняя последовательности величин, относящихся к прошлому времени, путем введения обозначений для моментов времени, предшествующих последнему интервалу. В рассматриваемом случае тот же результат достигается с помощью переменной, отражающей наше представление в данный момент времени о конкретном моменте или интервале прошедшего времени, например, с помощью имеющейся сейчас информации об уровне сбыта в прошлом году.
33
Приведенные символы состоят из начальных букв английских слов, выражающих соответствующие величины, например:
34
Обозначение L в шифре уравнений не следует смешивать с моментом времени L, который будет появляться в уравнениях темпов при обозначении отрезка времени KL.
35
Следует обратить внимание на то, что уравнения уровней есть интегральные уравнения. Если бы мы использовали формулировки, принятые для таких уравнений, то они имели бы вид:
где