Выбрать главу

Пока Кеплер формулировал первые математические законы, описывающие орбиты небесных тел, Галилей работал над выведением законов, регулирующих движения более близких к Земле объектов. Природа стала подвластной рациональному объяснению через математические формулы и собранные данные. И Кеплер, и Галилей сумели сформулировать то, что мы сегодня называем эмпирическими законами природы, после проведения экспериментов и тщательного анализа данных. Помимо всего прочего, их история учит нас, что для открытия математических законов Природы крайне важна экспериментальная точность (подумайте о Кеплере с его отклонением 8 угловых минут и о Галилее с его замерами времени при свободном падении). Естественным наукам необходимы методы, включающие в себя как математические уравнения, так и точные приборы. Одно значение измерений – это всего лишь число, но вот ряд значений может указывать на тенденцию. Задача ученого – понять смысл этой тенденции, изучить вероятные закономерности и выразить их в терминах математических законов, применимых к аналогичным системам. Законы Кеплера работают для всех объектов, движущихся по орбитам, будь то в Солнечной или иной звездной системе (если только гравитация в ней не слишком сильна), а результаты экспериментов Галилея со свободным падением применимы для всех (постоянных) гравитационных полей.

Ньютон стал для науки великим объединителем, связав физику Земли с законами небес. Своим законом всемирного тяготения он показал, что и закон Галилея о свободном падении, и закон Кеплера о движении планет по сути являются одним и тем же. Ньютон приблизил небеса к Земле и ко всему человечеству и позволил человеческому уму проникнуть в их тайны. Если эмпирические законы его предшественников рассказывали о закономерностях процессов на Земле и над ней, то его закон описывал общий космический порядок в масштабе, доселе недоступном мыслителям. Будучи увлеченным алхимиком, Ньютон, должно быть, очень радовался, когда ему удалось найти практическое воплощение знаменитого выражения из «Изумрудной скрижали» Гермеса Трисмегиста, главного кодекса алхимии: «То, что находится внизу, аналогично тому, что находится вверху».[43] Для Ньютона математические принципы натурфилософии, алхимический поиск единства духа и материи и роль Бога как Создателя и хранителя мирового порядка были прочно связаны между собой.

Движения всех деталей космического механизма, будь то дальние планеты или падающее яблоко, подчиняются ряду правил, выраженных в одном уравнении. Неудивительно, что Ньютона превозносят как создателя современной науки, как воплощение силы разума, позволяющей познать мир вокруг.

Но многие забывают, что Ньютон не был типичным одиноким теоретиком, погруженным в поиски математических законов природы в своем кабинете в Кембридже. Он и правда был отшельником и отрицал любые прямые социальные контакты или обмен знаниями, чему существует множество документальных доказательств и что не раз отражалось в его биографиях. Гораздо меньше широкой публике известно о том, что Ньютон был старательным экспериментатором, проведшим много часов за изучением свойств света и алхимическими опытами в поисках тайных знаний. К этому мы еще вернемся чуть позже.

В оптике Ньютон занимался исследованиями природы видимого света, в частности, он определил, что тот состоит из напластования бесконечного количества цветов, находящихся в радуге между красным и фиолетовым. Более того, Ньютон изобрел новый тип телескопа, рефлектор, гораздо более мощный, чем рефракторный телескоп Галилея, дававший изображения с гораздо большим разрешением и не имевший цветовых искажений (так называемых аберраций). Благодаря рефлекторному телескопу, в котором использовалось зеркало, собирающее свет и фокусирующее его в глазах наблюдателя, Ньютон стал знаменитым еще до открытия законов механики и всемирного тяготения. К 1669 году он уже был назначен вторым Лукасовским профессором математики в Кембриджском университете. Эта должность была создана в 1663 году и существует до сих пор. С 1979 года ее занимал Стивен Хокинг, а после его ухода на пенсию место перешло к Майклу Грину – известному ученому, занимающемуся теорией струн.

В декабре 1671 года первый Лукасовский профессор Исаак Барроу, восхищавшийся работами Ньютона, отвез его рефлекторный телескоп в Лондон, чтобы продемонстрировать членам Королевского общества – знаменитого сообщества ученых, ставившего своей целью познание законов Природы. Еще через месяц Ньютон вступил в общество, тем самым закрепив за собой место среди элиты британской науки. Однако вместе со славой к нему пришла известность, а с известностью – профессиональная зависть и интеллектуальная конфронтация. Ньютону совсем не хотелось играть в эти игры, по крайней мере поначалу. Только после публикации в 1687 году «Начал», его труда, в котором были представлены законы механики и всемирного тяготения, и признания в качестве одного из величайших ученых всех времен Ньютон осмелился вернуться в общество.

вернуться

43

Jonathan Hughes, The Rise of Alchemy in Fourteenth-Century England: Plantagenet Kings and the Search for the Philosopher’s Stone (London: Continuum, 2012), 24.

полную версию книги