Выберем наибольшие степени р и запишем порядок (а) = рem, порядок (b) = рfn, где e и f — два положительных целых числа. Также предположим, что е < f. Обратите внимание, что m и n взаимно простые: если бы они имели общий простой делитель, он также был бы делителем порядков а и b, следовательно, был бы равен р. Это же верно для рe и m, а также для рf и n.
Применив лемму к циклическим группам, порожденным а и b, получим изоморфизмы <a>≃<am> × <apr> и <b>≃<bn> × <bpt>. Следовательно:
<a> × <b> ≃ <am> × <ape> × <bn> × <bpf>. (*)
131
Рассмотрим три последних множителя, которые имеют порядок m, pf и n соответственно. Так как m и pf взаимно простые, из леммы следует, что прямое произведение <apr> × <bn> изоморфно циклической группе порядка pfm. Так как n и pfm также взаимно простые, мы можем вновь применить эту лемму и показать, что произведение трех множителей изоморфно циклической группе <х> порядка pfmn.
Примем у = аm. Порядок этого элемента равен рe. Из формулы (*) следует, что прямые произведения <а> <b> и <х> <у> изоморфны, следовательно, существует сюръективное отображение <х> <у> на G. Иными словами, х и у порождают G.
Теперь нетрудно показать, что порядок (х) = pfmn делится на порядок (у) = рe, так как мы предположили, что е < f. Мы доказали следующую лемму[2]:
Лемма 2. Пусть G — конечная абелева группа, порожденная двумя элементами.
Можно выбрать ее порождающие элементы так, что порядок одного будет делителем порядка другого.
Продолжим доказательство.
Согласно предыдущей лемме мы можем выбрать порождающие элементы х и у группы G так, что порядок (у) = l и порядок (х) будет кратным l и равным, к примеру, lk. Все элементы G можно будет записать в виде 0 ≤ i < lk у 0 ≤ у< l, где 0 < i < lk и 0 < j< l.
Если бы две степени порождающих элементов совпадали, эта запись была бы не единственной. К примеру, если бы у3 равнялось х2, то х2у4 и х4у были бы двумя разными способами записи одного и того же элемента. Обозначим через t наименьшее целое положительное число такое, что уt совпадает с xs для некоторого целого s. Мы знаем, что t < I, так как уl = е = хlk.
132
В этой новой нотации каждый элемент G можно записать единственным образом в виде xiyj, где 0 < i < lk и 0 < j < t. В самом деле, если бы равенство xiyj = xiyj выполнялось для какого-либо 0< j' ≤ j < t, то мы получили бы хi'-i = уj-j', или, что аналогично, уj-j' было бы степенью х. Так как j’ — j строго меньше t, эта величина может равняться только нулю, следовательно, j = j' и i' = i, так как хi'-i = е при —lk < i' —i < lk.
Это доказывает, что порядок G равен произведению двух верхних границ показателей степени i и j, то есть lkt.
Обозначим через r порядок элемента уt. Так, е = (уt)r = уtr. Так как у — элемент порядка l, мы знаем, что l ≤ tr. Мы хотим доказать, что l = tr, следовательно, надо исключить случай l < tr. Будем рассуждать следующим образом: если t < tr, то существует целое число u < r такое, что l заключено между tu и t(u + 1), то есть выполняется равенство tu < l < t(u + 1). Обратим внимание на величину t(u + 1) — l.
С одной стороны, это целое положительное число, меньшее t, так как 0 < t(u + 1) — l < t(u + 1) — tu = у.
С другой стороны, имеем равенства yl(u+1)-l = yt(u+1)(u + i )= xs(u+1), так как у имеет порядок l, и уt = xs.
Таким образом, мы доказали, что существует целое положительное число, меньшее t, такое, что у, возведенное в эту степень, равно некоторой степени х. Этот вывод абсурден, так как, по определению, t — наименьшее целое число, обладающее этим свойством. Таким образом, мы исключили случай l < tr. Имеем l = tr. Так, е = уt = ylr = xsr.
В дальнейших рассуждениях применим следующую лемму.
Лемма 3. Пусть g — элемент порядка n группы G. Тогда n будет делителем любого целого числа d такого, что gd = е.
Достаточно доказать эту лемму для положительных d. Так как n — наименьший целый показатель степени, для которого g, возведенный в эту степень, совпадает с нейтральным элементом, мы знаем, что n < d. Следовательно, мы можем разделить duann получить d = рп + r, где 0 < r < n — остаток от деления.
Тогда е = gd = gpn + r = (gn)p gr = gr, так как gn = e. Таким образом, gr = e, и это означает, что r = 0 — в противном случае порядок g будет равняться не n, а r. Лемма доказана.
Так как xsr = е, то, по лемме 3, sr нацело делится на порядок (х) = Ik, то есть существует v такое, что sr = Ikv. Подставив в это выражение значение f, которое
133
мы только что вычислили, получим sr = trkv. Так как r — порядок элемента уt, это ненулевое целое число. Разделив на него обе части равенства, получим s = tkv.
В этом, последнем, разделе мы докажем, что группа G изоморфна прямому произведению циклических групп, порожденных х и x-vky, где v — целое число, определенное в предыдущем разделе. Имеем элементы порядка lk и t соответственно.
В первом случае доказательство не требуется. Во втором случае заметим, что
(x-vky)t = x-vkt yt = x-vkt xs = xs-vkt = e,
так как yt = xs и s = vkt. Если бы существовало другое целое число t' < t, для которого (х-vky)t' = е, то мы получили бы равенство у1 =x~vkt. Однако это выражение противоречит определению f как наименьшего целого числа, для которого у1 — степень х. Следовательно, x~vky имеет порядок f, а порядок прямого произведения <х>
<x~vky> равен Ikt.
Рассмотрим функцию φ:<x>×<x-vk>→G которая ставит в соответствие пару (хi, (x-vky)j) элементу xi-vkyj. Проведя расчеты, очень схожие с теми, что были выполнены при доказательстве леммы 1, получим, что φ определено однозначно и является гомоморфизмом групп (предлагаем читателю провести необходимые расчеты самостоятельно). Так как группы G и <х> х <x-vk> имеют один и тот же порядок, то чтобы показать, что φ — изоморфизм, достаточно доказать, что это отображение является инъективным, то есть доказать, что из xi-vkyj = e следует хi = е и (x-vky)j = е. Последнее равенство эквивалентно равенству yj = x-vkj, таким образом, уj является степенью х. Проведя рассуждения, по сути, аналогичные тем, что мы выполнили при доказательстве леммы 3, увидим, что j должно быть кратно t.
Следовательно, существует j' такое, что j = tj'. Имеем:
e = хi-vk уi = хi-vktj' уtj' = хi-(vkt)j'xsj' = хi-sj' хsj' = хi,
так как уt = хs и s = ukt. Следовательно, как и требовалось, хi = е. Мы показали, что группа G изоморфна прямому произведению двух циклических групп. Если их порядки выражаются взаимно простыми числами, эта группа изоморфна циклической группе. Теорема доказана.
2
2 На самом деле мы доказали следующий, более точный результат.
Пусть С — конечная абелева группа, порожденная двумя элементами а и b. Пусть порядок (а) = p1e1 ... m prer и порядок (b) = p1f1 ... m prfr, где р — простые числа, e1 и f1 — целые неотрицательные числа, m и n — взаимно простые. Следовательно, группа G изоморфна группе, порожденной двумя элементами х и у такими, что порядок (х) = p1h1 ... prhr, mn и порядок (у) = p1g1 ... prgr, где h = max(е, f) и g = min(e, f) для всех i = 1,...,r.