Выбрать главу

Конечно, это поднимает вопрос, оправданно ли, ради изложения простого правила, описывать Вселенную в нереальных условиях? Правило Галилео о том, что все объекты любого веса падают на равные расстояния в равное время, может быть выражено в очень простой математической форме. Однако правило это истинно только в физическом вакууме, который фактически не существует. (Даже лучший вакуум, который мы можем создать, даже вакуум межзвездного пространства не является абсолютным.) С другой стороны, мнение Аристотеля о том, что более тяжелые объекты падают более быстро, чем легкие, — истинно, по крайней мере до некоторой степени, в реальном мире. Однако его нельзя привести к простому математическому выражению, поскольку скорость падения тел зависит не только от их веса, но также и от их формы.

Можно считать, что следует придерживаться реальности любой ценой. Однако хотя это может быть и правильно с моральной точки зрения, такой подход далеко не самый полезный и удобный. Сами греки в своей геометрии предпочли идеальный подход реальному и продемонстрировали, что гораздо больших результатов можно достигнуть рассмотрением абстрактных линий и форм, чем изучением реальных линий и форм мира; большее понимание, полученное при помощи абстракции, можно удачно применять при подходе к той самой действительности, которая игнорировалась в процессе получения знания.

Почти четыре столетия опытов, начиная с эпохи Галилео, показали, что часто более полезно отбыть из реального мира и построить «модель» изучаемой системы; в такой модели отбрасываются некоторые из усложнений, поэтому из оставшегося Может быть создана простая и обобщенная математическая структура. Как только это сделано, мы можем начать восстанавливать один за другим факторы усложнения и соответственно изменять взаимоотношения. Попытка же учесть все взаимосвязи сложностей действительности без предварительной разработки упрощенной модели является настолько трудным делом, что фактически никогда не была предпринята, и мы смеем предположить, что если бы такая попытка и была предпринята, то вряд ли бы увенчалась успехом.

Таким образом, бесполезно судить, являются ли взгляды Галилео «истинными», а Аристотеля «ложными» или наоборот. В отношении скоростей падения тел имеются аргументы, которые поддерживают как одну точку зрения, так и другую. Что мы можем сказать наверняка, так это то, что взгляды Галилео на движение, как оказалось, объяснили намного больше и в более простой форме, чем это сделали взгляды Аристотеля. Поэтому Галилеево представление о движении было гораздо более пригодным. Последнее было признано вскоре после того, как были описаны эксперименты Галилео и аристотелевская физика рухнула.

Ускорение

Если мы будем измерять расстояние, пройденное телом, катящимся вниз по наклонной плоскости, мы обнаружим, что тело последовательно покрывает все большие и большие расстояния за равные временные интервалы.

То есть мы видим, что в первую секунду тело прошло расстояние в 2 фута; в следующую секунду оно прошло уже 6 футов при полном расстоянии в 8 футов; в третью секунду — 10 футов при расстоянии в 18 футов; в четвертую секунду — 14 футов при полном расстоянии в 32 фута. Ясно, что с течением времени шар катится все более и более быстро.

Это само по себе не идет вразрез с аристотелевской физикой, поскольку теория Аристотеля не говорит ничего относительно того, как изменяется со временем скорость падающего тела. Фактически это увеличение в скорости соотносится с аристотелевским представлением, поскольку можно сказать, что, так как тело приближается к своему естественному месту, его «рвение» попасть туда усиливается, что приводит к соответствующему увеличению скорости.

Однако важность метода Галилео заключается в том, что он подошел к вопросу изменения скорости не качественным, а количественным способом. Недостаточно просто сказать «скорость увеличивается со временем». Если это представляется возможным, надо сказать, насколько она увеличивается, и постараться разработать точную взаимосвязь скорости и времени.

Например, если шар проходит 2 фута за одну секунду, 8 футов за две секунды, 18 футов за три секунды и 32 фута за четыре секунды, то, казалось бы, имеется взаимосвязь между пройденным расстоянием и квадратом затраченного на его прохождение времени. Как мы видим, 2 равно 2 х 12, 8 равно 2 х 22, 18 равно 2 х 32, и 32 равно 2 х 42. Мы можем определить эти отношения, сказав, что полное расстояние, покрытое шаром, катящимся вниз по наклонной плоскости (или объектом, находящимся в свободном падении) со старта из состояния покоя, — прямо пропорционально[5] квадрату затраченного времени.

вернуться

5

Когда мы говорим, что a «прямо пропорционально» b, мы имеем в виду, что увеличение b приводит к увеличению а. Когда же, наоборот, увеличение b приводит к уменьшению а (например, при повышении цены товара число продаж может уменьшиться), мы говорим тогда, что a «обратно пропорционально» b.