Взглянув на рисунок 7.6 и таблицу 14.1, можно с достаточной уверенностью заключить, что абсолютная разность Li(x) − π(x) положительна и возрастает. Численные свидетельства в пользу этого так убедительны, что Гаусс в своих собственных исследованиях полагал, что всегда так и происходит. Весьма вероятно, что исследователи поначалу соглашались с тем, или, по крайней мере, чувствовали уверенность в том, что π(x) всегда меньше чем Li(x). (Относительно мнения Римана по этому поводу ясности нет.) Поэтому статья Литлвуда 1914 года оказалась сенсацией, ибо в ней было установлено, что, напротив, существуют такие числа x, что π(x) больше чем Li(x). На самом деле доказано было гораздо большее.
Разность Li(x) − π(x) изменяется от положительной к отрицательной и обратно бесконечно много раз.
Если учесть, что π(x) меньше, чем Li(x), для всех x, до которых смогли добраться даже самые мощные компьютеры, то где же находится первая точка перехода, первое «литлвудово нарушение», когда π(x) становится равной, а затем и превосходит Li(x)?
В подобных ситуациях математики отправляются на поиски того, что они называют верхней границей, — такого числа N, для которого можно доказать, что, каким бы ни был точный ответ на данный вопрос, он во всяком случае будет меньше, чем N. Установленные верхние границы такого рода нередко оказываются много больше, чем реальный ответ[131].
Так и обстояло дело с первой установленной верхней границей литлвудова нарушения. В 1933 году студент Литлвуда Сэмюель Скьюз показал, что если Гипотеза Римана верна, то переход должен наступать раньше, чем , что представляет собой число из примерно 10десять миллиардов триллионов триллионов цифр. Это не само число — это число цифр в том числе. (Для сравнения заметим, что общее количество всех атомов во Вселенной оценивается числом из примерно восьмидесяти цифр.) Этот монстр получил известность как «число Скьюза» — самое большое число, которое когда-либо до того следовало из математического доказательства.[132]
В 1955 году Скьюз улучшил свой результат, на этот раз даже не предполагая справедливости Гипотезы Римана, и оказалось, что новое число содержит 10одна тысяча цифр. В 1966 году Шерман Леман сумел понизить верхнюю границу до куда более разумного (по крайней мере, позволяющего себя записать) числа 1,165×101165 (числа, другими словами, из каких-то 1166 цифр), а потом еще сильнее, до 6,658×10370.
На момент написания книги (середина 2002 года) лучшее достижение принадлежит Картеру Бейсу и Ричарду Хадсону, которые также исходили из теоремы Лемана.[133] Они показали, что имеются литлвудовы нарушения в окрестности числа 1,39822×10316, а также привели некоторые аргументы в пользу того, что это нарушение может оказаться первым. (Статья Бейса и Хадсона оставляет открытой маленькую лазейку для существования нарушений на более малых высотах, возможно, даже на столь низкой высоте, как 10176. Они также установили существование грандиозной зоны нарушений вблизи числа 1,617×109608.)
Колебания остаточного члена Li(x) − π(x) от положительных к отрицательным значениям и затем обратно происходящем не менее в пределах вполне определенных ограничений. Иначе не выполнялась бы ТРПЧ. Некоторые соображения по поводу природы этих ограничений возникли еще в результате усилий, направленных на доказательство ТРПЧ. Де ля Валле Пуссен включил в свое доказательство ТРПЧ некоторую оценку для функции, выражающей это ограничение. Пять лет спустя шведский математик Хельге фон Кох[134] доказал следующий ключевой результат, который я сформулирую в его современной записи.
Если Гипотеза Римана верна, то
π(x) = Li(x) + Ο(√x∙ln x).
Уравнение здесь читается так: «Пи от икс равно интегральному логарифму от икс плюс Ο большое от корня из икс, умноженного на логарифм икс». Теперь надо объяснить, что же такое «О большое».{3}
131
Разумеется, предпочтительнее знать точный ответ; но речь идет о том, что часто удается доказать лишь менее строгое ограничение.
132
В задачах такого типа имеются еще и нижние границы. Нижняя граница — это такое число
133
Если имена Бейса и Хадсона кажутся знакомыми, то это из-за того, что они упоминались в главе 8.iv в связи с отклонением Чебышева. На самом деле на очень глубоком уровне, определенно слишком глубоком, чтобы здесь о нем говорить, имеется родство между тенденцией функции Li
134
Читателям популярной литературы по математике фон Кох более известен благодаря «кривой Коха». В этом контексте всегда опускают «фон» — ума не приложу, почему. (Кривая Коха — фрактальная кривая, которая нигде не имеет касательной, хотя всюду непрерывна. Три копии кривой Коха, расположенные вдоль сторон правильного треугольника, образуют «снежинку Коха». —