Выбрать главу

где С — некоторое постоянное число. Ни одна из других подобных формул на вид не проще этой.

Сравним результат фон Коха 1901 года с выделенными курсивом словами в восьмой проблеме Гильберта, приведенной в главе 12.ii. Гильберт перекликался с Риманом, написавшим в своей работе 1859 года, что приближение функции π(x) функцией Li(x) «верно только по порядку величины x1/2». Ну а √x есть, конечно, попросту x1/2. Более того, в главе 5.iv мы видели, что ln x растет медленнее, чем любая положительная степень x, даже самая ничтожно малая. Это можно выразить в терминах Ο большого таким образом: для любого сколь угодно малого числа ε выполнено ln x = Ο(xε). А следовательно (это, правда, не сразу очевидно, но в действительности несложно доказать), можно подставить xε вместо ln x в выражение Ο(√x∙ln x); а поскольку √x — это просто x1/2, можно сложить степени и получить Ο(x1/2+ε). Таким путем получается довольно распространенный вид результата фон Коха: π(x) = Li(x) + Ο(x1/2+ε). Символ ε настолько часто используется для исчезающе малых чисел, что слова «… для любого сколь угодно малого ε» здесь подразумеваются.

Заметим, однако, что, делая эту подстановку, мы слегка ослабили результат фон Коха. Из того, что «остаточный член есть Ο(√x∙ln x)», следует, что «остаточный член есть Ο(x1/2+ε)», но обратное неверно. Эти два утверждения не являются точно эквивалентными. Такое происходит, потому что, как мы видели в главе 5.iv, не только ln x растет медленнее, чем любая степень x, но (ln x)N обладает тем же свойством при любом положительном N. Так что если бы результат фон Коха утверждал, что остаточный член есть Ο(√x∙(ln x)100), то мы все равно в качестве альтернативного вида вывели бы Ο(x1/2+ε)!

Однако запись результата фон Коха в этом слегка ослабленном виде Ο(x1/2+ε) хороша тем, что наводит на размышления. Риман был почти прав в том же смысле, в каком логарифмическая функция есть почти x0; порядок величины есть не х1/2, а x1/2+ε. Если учесть, какие средства имелись у него в наличии, каким было общее состояние знания в данной области и какие численные данные были доступны в то время, то риманово x1/2 все равно должно считаться прозрением потрясающей глубины.[136]

Вводя Ο большое, я начал с истории, так что сейчас, прощаясь с ним, расскажу еще одну. Суть ее в том, что математики, как и другие специалисты, иногда любят напустить туману, чтобы отпугнуть и смутить профанов.

На конференции в Курантовском институте летом 2002 года (см. главу 22) я разговаривал по поводу своей книги с Питером Сарнаком. Питер — профессор математики в Принстонском университете и специалист по теории чисел. Я упомянул, что пытаюсь придумать, как объяснить Ο большое тем читателям, кто с ним незнаком. «О, — сказал Питер, — вам надо бы поговорить с моим коллегой Ником (т.е. Николасом Кацем — он тоже профессор в Принстоне, но занимается в основном алгебраической геометрией). Ник ненавидит Ο большое. Никогда его не использует». Я это проглотил, но взял на заметку, рассчитывая, что смогу придумать, как это использовать в книге. В тот же вечер мне случилось разговаривать с Эндрю Уайлсом, который очень хорошо знает и Сарнака, и Каца. Я упомянул нелюбовь Каца к Ο большому. «Чепуха, — сказал Уайлс, — они просто над вами потешаются. Да Ник все время его использует». И будьте уверены, Кац использовал его в лекции на следующий же день. Своеобразное чувство юмора у математиков.

вернуться

136

В этой области ведется немало исследований. Весьма вероятно, что на самом деле π(x) = Li(x) + Ο(√x), что, возможно, и имел в виду Риман в своем замечании насчет «порядка величины». Однако мы ни в какой мере не близки к доказательству этого факта. Некоторые исследователи, между прочим, предпочитают обозначение Οε(x1/2+ε), чтобы подчеркнуть, что постоянная, подразумеваемая в определении О большого, зависит от ε. Если использовать это обозначение, то логика раздела 15.iii слегка изменяется. Заметим, что квадратный корень из N примерно в два раза короче (я имею в виду, что он содержит примерно в два раза меньше цифр), чем N. Отсюда следует (хотя я и не буду останавливаться ради подробного доказательства), что Li−1(N) дает для N-го простого числа правильный результат примерно до половины длины (примерно первая половина цифр оказывается правильной). Выражение Li−1(N) здесь надо понимать в смысле обратной функции, как в главе 13.ix, следующим образом: «число К, для которого Li(K) = N». Миллиардное простое, например, есть 22 801 763 489, a Li−1(1 000 000 000) равно 22 801 627 415, где мы видим пять, почти шесть правильных цифр из одиннадцати.