Но это еще не конец. При перемножении скобок возникает сумма всех возможных членов, получаемых взятием одного числа из каждой скобки. Предположим, мы выбрали из первой скобки,
из второй и 1 из всех остальных. Это дает
×
×1×1×1×…, что равно
. Похожие вещи мы получим из каждой возможной пары выборов не-единиц. Выбирая из третьей скобки
и
из шестой, а единицы из всех остальных, получаем член, равный
.
(Заметим, что здесь работают два простых правила арифметики. Одно — это правило знаков, гласящее, что минус умножить на минус дает плюс, а другое — 7-е правило действий со степенями, согласно которому (x×y)n = xn×yn.)
Так что наряду с членами, уже собранными в выражении (15.3), имеется новый набор, каждый член в котором происходит из каждой пары простых чисел, как 5 и 13, и которые все входят со знаком плюс. Таким образом, выражение (15.3) разрослось до такого:
где каждое число во второй строке есть произведение двух различных простых.
А ведь мы едва начали нашу деятельность по перемножению бесконечного числа скобок. Следующий шаг состоит в том, чтобы перебрать все возможные способы выбрать три не-единицы (при всех остальных единицах). Например, 1××1×1×
×
×1×1×…, из чего возникает
.Теперь результат разрастается до
где каждое число в третьей строке есть произведение трех различных простых.
В предположении, что мы продолжаем так поступать, а также в предположении, что получающиеся члены можно переставлять, как мы пожелаем, выражение (15.1) превращается в следующее (15.4):
Натуральные числа в правой части — это… что? Это заведомо не все натуральные числа: 4, 8, 9 и 12 там отсутствуют. Но и не простые: присутствующие там 6, 10, 14 и 15 не являются простыми. Если оглянуться на процесс перемножения этого бесконечного количества скобок, то станет ясно, что ответ такой: каждое натуральное число, которое равно произведению нечетного числа (включая 1) различных простых, взятое со знаком минус, и, кроме того, каждое натуральное число, которое равно произведению четного числа различных простых, взятое со знаком плюс. Отсутствуют такие числа, как 4, 8, 9, 12, 16, 18, 20, 24, 25, 27, 28, … — т.е. числа, которые делятся на квадрат некоторого простого.
Поприветствуем функцию Мебиуса! Она названа по имени немецкого математика и астронома Августа Фердинанда Мебиуса (1790–1868).[137]
Рисунок 15.4. Лента Мебиуса и муравей на ней.
В наше время ее общепринято обозначать греческой буквой μ, что произносится как «мю» — греческий эквивалент буквы «м».[138] Приведем полное определение функции Мебиуса.
• Ее область определения есть N, то есть все натуральные числа 1, 2, 3, 4, 5, ….
• μ(1) = 1.
• μ(n) = 0, если среди делителей числа n есть квадрат.
• μ(n) = −1, если число n простое или является произведением нечетного числа различных простых чисел.
• μ(n) = 1, если число n является произведением четного числа различных простых чисел.
Такое определение функции может показаться вам страшно громоздким. Однако функция Мебиуса приносит колоссальную пользу в теории чисел и далее в этой книге будет играть ведущую роль. В качестве примера приносимой ею пользы заметим, что все трудоемкие алгебраические действия, через которые нам пришлось продираться, сводятся к изящному выражению (15.5):
B истории Гипотезы Римана наряду с самой функцией μ(n) не меньшую роль играет ее нарастающее значение, т.е. результат сложения μ(1) + μ(2) + μ(3) + … + μ(k) для некоторого числа k. Так определяется «функция Мертенса» М(k). Ее первые 10 значений (т.е. значения при k = 1, 2, 3, …, 10) равны 1, 0, −1, −1, −2, −1, −2, −2, −2, −1. Функция M(k) весьма нерегулярна — она совершает колебания в обе стороны вокруг нулевого значения в стиле, который математики называют «случайными блужданиями». Для аргументов, равных 1000, 2000, …, 10 000, ее значения равны 2, 5, −6, −9, 2, 0, −25, −1, 1, −23. Для аргументов миллион, 2 миллиона, …, 10 миллионов ее значения равны 212, −247, 107, 192, −709, 257, −184, −189, −340, 1037. Если не обращать внимания на знаки, то видно, что величина функции M(k) возрастает, но помимо этого никакой ясной картины не просматривается.
137
Мебиуса более всего помнят за ленту (лист) Мебиуса, показанную на рисунке 15.4, которую сам он придумал в 1858 г. (Ранее она была описана другим математиком, Йоханом Листингом, также в 1858 г. Листинг опубликовал свое открытие, а Мебиус — нет, так что, согласно академическим правилам, ее следовало бы называть «лентой Листинга». Мир устроен несправедливо.) Чтобы сделать ленту Мебиуса, надо взять полоску бумаги за концы (один конец в правой руке, другой — в левой), перекрутить один из них на 180 градусов и склеить их друг с другом. Получится односторонняя поверхность — муравей может переползти из любой точки на полосе в любую другую точку, не перелезая при этом через край.
138
Если вам кажется, что выбор буквы, указывающей на свое собственное имя, было проявлением тщеславия со стороны Мебиуса, то сообщу вам, что сам Мебиус при первом описании своей функции в 1832 г. не использовал буквы