Тейхмюллер был очень одаренным человеком и в действительности стал прекрасным математиком.[144] Из письма ясно видно, что мотивировка бойкота была идеологическая. Тейхмюллер искренне и всем сердцем верил в нацистские доктрины, включая расовую, и ему представлялось совершенно недопустимым, чтобы немецких студентов учили евреи. Мы привыкли воспринимать нацистских активистов как головорезов, люмпенов, приспособленцев и неудачников того или иного сорта, каковыми многие из них в самом деле являлись. Полезным, однако, бывает напоминание, что среди них встречались люди исключительно одаренные.[145]
Убитый горем Ландау уехал из Геттингена и отправился в Берлин, в свой семейный дом. Позже он несколько раз ездил за границу читать лекции, что, по-видимому, доставляло ему огромное удовольствие, однако он не собирался навсегда покидать родную землю и перебираться за границу; он умер своей смертью в Берлине в 1938 году.
Гильберт же умер в Геттингене во время войны — 14 февраля 1943 года, за три недели до своего 81-летия, вследствие осложнений после падения на улице. Не более десятка людей собрались на прощальной службе. Лишь двое из них могли похвастаться значительными математическими достижениями: физик Арнольд Зоммерфельд, бывший старым другом Гильберта, и вышеупомянутый Густав Херглотц. Родной город Гильберта Кенигсберг сровняли с землей во время войны; теперь это российский город Калининград. Геттинген в настоящее время представляет собой обычный провинциальный немецкий университет с сильным математическим факультетом.
Те годы — начало 1930-х, перед тем как сгустился мрак, — подарили нам один из самых романтических эпизодов в истории Гипотезы Римана — открытие формулы Римана-Зигеля.
Карл Людвиг Зигель, сын берлинского почтальона, преподавал во Франкфуртском университете. Состоявшийся ученый, специалист по теории чисел, он прекрасно понимал (как это должен был понимать и любой читавший ее математик), что статья Римана 1859 года представляла собой, в терминологии Эрвинга Гоффмана, с которым мы встречались в главе 4.ii, всего лишь фасад намного более масштабной конструкции, сжатое изложение для публикации гораздо большей по объему работы, проходившей, по-видимому, «за сценой». Поэтому он постарался выкроить как можно больше времени, чтобы провести его в Геттингене, просматривая относящиеся к тому периоду личные математические записи Римана и надеясь найти какие-нибудь зацепки, указывающие на ход мыслей Римана во время его работы над той статьей.
Зигель был вовсе не первым, предпринявшим такую попытку. В 1895 году Генрих Вебер закончил работу над вторым изданием «Собрания трудов» Римана, после чего отдал его бумаги на хранение в университетскую библиотеку. Когда там появился Зигель, бумаги пролежали среди архивов в Геттингене (где они находятся и по сей день, см. главу 22.i) уже 30 лет. Разные исследователи неоднократно предпринимали попытки изучить эти записи, но все в конце концов отступали перед фрагментарным и неорганизованным стилем черновиков Римана, или же, вполне вероятно, им просто не хватало математической квалификации для понимания этих записей.
Зигель был сделан из более крутого теста. Он не отступил и продолжал изучать толстые кипы небрежно исписанных листков и в результате сделал потрясающее открытие, которое и опубликовал в 1932 году в статье под названием «О Nachlass[146] Римана, относящихся к аналитической теории чисел». Это одна из ключевых работ в истории Гипотезы Римана. Чтобы объяснить суть сделанного Зигелем открытия, нам надо вернуться к вычислительной линии повествования — другими словами, к попыткам реально вычислить нули дзета-функции и проверить Гипотезу Римана экспериментально.
В нашем рассказе о вычислительном направлении в главе 12 мы остановились на Йоргене Граме, который в 1903 году опубликовал результаты вычисления 15 первых нетривиальных нулей. Работа в этом направлении не прекращается по сей день. В 1996 году на конференции по Гипотезе Римана в Сиэтле Эндрю Одлыжко представил историю вопроса, которая показана в таблице 16.1.
| Исследователь(и) | Дата опубликования | Число нулей с вещественной частью 1/2 | ||
|---|---|---|---|---|
| Й. Грам | 1903 | 15 | ||
| Р.Дж. Бэклунд | 1914 | 79 | ||
| Дж. И. Хатчинсон | 1925 | 138 | ||
| Э.Ч. Титчмарш и др. | 1935-1936 | 1041 | ||
| А.М. Тьюринг | 1953 | 1054 | ||
| Д.Х. Лемер | 1956 | 25 000 | ||
| Н.А. Меллер | 1958 | 35 337 | ||
| Р.Ш. Леман | 1966 | 250 000 | ||
| Дж. Б. Россер и др. | 1969 | 3 500 000 | ||
| Р.П. Бренти др. | 1979 | 81 000 001 | ||
| X. те Риле, Я. ван де Луне и др. | 1986 | 1 500 000 001 | ||
144
Имеется ветвь геометрической теории функций, называемая, быть может не вполне правильно, «теорией Тейхмюллера». Там рассматриваются свойства Римановых поверхностей. Тейхмюллер добровольцем пошел в действующую армию во время Второй мировой войны и пропал без вести в боях на Днепре в сентябре 1943 г.
145
В мире математики другим примером является Людвиг Бибербах, автор знаменитой гипотезы в теории функций комплексной переменной (гипотезу доказал в 1984 г. Луи де Бранж). Устные экзамены у аспирантов в Берлинском университете в 1933 г. Бибербах принимал в полном нацистском облачении.
146
Я не в состоянии придумать никакого удовлетворительного перевода слова Nachlass. Равным образом — если судить по эпизодическому появлению этого слова в написанных по-английски текстах — и никому другому это не удалось. Это «литературные останки», как сообщает мне мой немецкий словарь. В данном контексте это должно означать «неопубликованные записи, найденные среди личных вещей ученого после его смерти».