Выбрать главу

Таблица 16.1. Вычисление нулей дзета-функции.

В конце 2000 года ван де Луне довел вычисления до 5 миллиардов нулей дзета-функции Римана, а в октябре 2001 года — до 10 миллиардов. Тем временем в августе 2001 года Себастьян Веденивски, использовав свободные процессорные мощности на 550 офисных персональных компьютерах корпорации IBM в Германии, инициировал проект по дальнейшему развитию этих вычислений. Последний опубликованный результат Веденивски датируется 1 августа 2002 года; число нетривиальных нулей с вещественной частью одна вторая доведено до 100 миллиардов.

Здесь на самом деле происходит несколько вещей сразу, и важно четко их разделять.

Во-первых, не следует смешивать а) высоту вдоль критической прямой и б) число нулей. «Высота» означает просто мнимую часть комплексного числа: высота числа 3 + 7i равна 7. При рассмотрении нулей дзета-функции принято обозначать высоту буквой t или T. (Поскольку мы знаем, что нули симметричны относительно вещественной оси, мы интересуемся только положительными t). Имеется формула для числа нулей вплоть до высоты T:

N(T) = T/∙ln (T/)T/ + Ο(ln T)

Это на самом деле очень хорошая формула (первые два слагаемых в ней принадлежат Риману): она дает превосходное приближение уже для достаточно малых значений T. Если не обращать внимания на член с Ο большим[147], то для T, равного 100, 1000 и 10 000 она дает соответственно 28,127, 647,741 и 10 142,090. Истинное же число нулей на этих высотах составляет 29, 649 и 10 142. Чтобы получить значение N(T) величиной в 100 миллиардов, как у Веденивски, требуется взять T равным 29 538 618 432,236… — до такой высоты Веденивски и добрался в своих исследованиях.

Далее, имеется путаница по поводу того, что именно вычисляется. Не предполагается, что Веденивски способен предъявить все 100 миллиардов этих нулей, вычисленных с высокой (или даже со средней) точностью. Цель подобных исследований состоит главным образом в подтверждении Гипотезы Римана, а это можно сделать, не прибегая к высокоточным вычислениям нулей. Имеются некоторые теоретические построения, позволяющие вычислить, сколько нулей имеется в критической полосе между высотами T1 и T2 — т.е. внутри прямоугольника, верхняя и нижняя стороны которого задаются числами T1 и T2, отложенными вдоль мнимой оси, а левая и правая сторона — числами 0 и 1 на вещественной оси, как показано на рисунке 16.1. Имеется и другое теоретическое построение, которое позволяет вычислить, сколько нулей расположено на критической прямой между данными высотами.[148] Если два вычисления дают один и тот же результат, то можно считать, что вы тем самым подтвердили Гипотезу Римана в данном интервале. Это можно сделать, имея лишь грубое знание о том, где на самом деле расположены нули. Большая часть таблицы 16.1 относится к работе такого сорта.

Рисунок 16.1. Высоты T1 и Т2 на критической полосе.

вернуться

147

Из нашего обсуждения Ο большого мы помним, что оно включает в себя некоторый постоянный множитель. Так, Ο(ln T) означает, что «этот член никогда не превосходит некоторого постоянного кратного величины ln T». Характеристика формулы как «очень хорошая» означает, что этот постоянный множитель мал. В данном случае он меньше чем 0,14.

вернуться

148

Соответствующая теория имеет дело с нулями, расположенными в точности (в математическом смысле) на критической прямой. Это важно для понимания логики происходящего. Теория A говорит вам: «Имеется n нулей в прямоугольнике от T1 до T2» (рис. 16.1). Теория B говорит: «Имеется m нулей на критической прямой от T1 до T2». Если окажется, что m = n, то, значит, мы проверили Гипотезу Римана между T1 и T2, если же m меньше, чем n, то мы опровергли Гипотезу! (Ясно, что ситуация, когда m больше n, логически невозможна.) Теория B имеет дело с тем, что происходит на критической прямой. Рассматриваемые там нули не могут иметь вещественных частей 0,4999999999 или 0,5000000001. Это замечание полезно сравнить с другим замечанием на эту тему, сделанным в главе 12.vii.