Выбрать главу

Всякое поле, конечное или бесконечное, имеет важный параметр — число, называемое характеристикой. Характеристика поля говорит о том, сколько раз надо прибавить единицу к самой себе, чтобы получить нуль. Если 1 + 1 + 1 + … = 0 (где берется N слагаемых), то характеристика равна N. Понятно, что характеристика поля F2 равна 2. Чуть менее очевидно, хотя и без труда проверяется с помощью таблицы сложения на рисунке 17.2, то, что характеристика поля F4 тоже равна 2. Такие поля, как Q, R, С, в которых никакое прибавление единицы к самой себе какое угодно количество раз никогда не даст в результате нуль, по определению имеют характеристику «нуль». (Вы могли бы подумать, что более логичной будет характеристика «бесконечность», и вы, возможно, правы, но имеются веские причины и для того, чтобы объявить характеристику нулевой.) Можно проверить, что характеристика любого поля есть или нуль, или некоторое простое число.

Поскольку мы имеем дело с алгеброй, элементы полей не обязаны быть числами. Алгебра позволяет работать с математическими объектами любого типа. Рассмотрим все многочлены (полиномиальные функции) любой заданной степени, т.е. все выражения вида axn + bxn−1 + cxn−2 + …, где a, b, c и т.д. — целые числа. Теперь образуем множество всех рациональных функций, другими словами, функций, являющихся отношением (ratio) двух многочленов. Получим поле. Приведем пример сложения в этом поле:

(Примерно этим и занимаются на уроках алгебры в старших классах.)

Коэффициенты многочленов не обязаны быть целыми. На самом деле можно позабавиться, сделав их элементами из конечного поля, такого как рассмотренное выше поле F2. В качестве примера сложения, которое при этом получается, имеем

(При проверке этого равенства надо помнить, что в поле F2 выполнено 1 + 1 = 0, а потому x + x = 0, x2 − x2 = 0 и т.д.) Это поле будет называться полем рациональных функций над F2. В нем, разумеется, бесконечно много элементов; лишь коэффициенты ограничены своей принадлежностью к конечному полю. Таким образом, можно использовать конечное поле для построения бесконечного. Заметим еще, что, поскольку 1 + 1 = 0, это поле имеет характеристику 2. Следовательно, и бесконечные поля могут иметь конечную характеристику.

Не имеет особого смысла спрашивать, что собой представляет x в последних двух примерах. Это символ, для манипуляций с которым у нас имеются строго определенные правила. С алгебраической точки зрения главное в этом и состоит. На самом деле почти наверняка ответ на данный вопрос звучит как «x представляет собой число». Однако алгебраисты куда больше интересуются тем, какого типа это число — каким семействам, каким группам, каким полям оно принадлежит и какие правила манипуляций с ним выполнены. Для аналитика же наше число а + b√2 не слишком интересно. «Это просто вещественное число», — скажет аналитик. — «Ладно, алгебраическое число» (см. главу 11.ii), — если на него надавить. Но для алгебраиста, однако, оно представляет особый интерес постольку, поскольку относится к некоторому полю. Вообще алгебраисты и аналитики рассматривают не столько разные вещи, сколько аспекты одной и той же вещи.[159]{A8}

III.

Краткий взгляд на размах, мощь и красоту теории алгебраических полей — это все, на что нам здесь хватает места, хотя мы и вернемся ненадолго к полям, рассмотрев их под другим углом зрения в главе 20.v. Я привел здесь этот краткий обзор алгебраических сведений, потому что в 1921 году Артин в своей диссертации, которую он защищал в Лейпцигском университете, применил теорию полей для развития нового подхода к Гипотезе Римана. Соответствующий математический аппарат достаточно серьезен, и я расскажу о нем лишь очень бегло.

Как уже упоминалось в предыдущем разделе, для всякой степени pN простого числа имеется конечное поле. Мы также видели, как конечное поле можно использовать в качестве основы для построения других полей, в том числе бесконечных. Оказывается, что если начать с конечного поля, то имеется способ таким образом построить эти поля-«расширения», что с ними будет связана некоторая дзета-функция. Под «некоторой дзета-функцией» здесь понимается функция комплексного аргумента, определенная над полем комплексных чисел и по целому ряду своих свойств необъяснимым образом напоминающая дзета-функцию Римана. Например, эти аналоги римановой дзета-функции снабжены своим собственным Золотым Ключом — своей собственной эйлеровой формулой произведения, а также своей собственной Гипотезой Римана.[160]

вернуться

159

Попытаюсь выразить это в афористичной форме: алгебраистов заботит не столько то, чем являются вещи, сколько то, что с ними можно делать. Они — «отглагольные», а не «отсуществительные» люди. Другой интересный концептуальный взгляд на алгебру предложил сэр Майкл Атья в своей лекции в Филдсовском институте в Торонто в июне 2000 г. Тогда как геометрия с очевидностью имеет дело с пространством (говорил сэр Майкл, лауреат Филдсовской премии), алгебраисты имеют дело с временем. «Геометрия по существу статична. Я могу просто сидеть здесь и наблюдать, при этом может ничего не меняться, но это не мешает мне наблюдать. Алгебра, однако, имеет дело с временем, потому что там имеются операции, которые надлежит выполнять последовательно.» (Шенитцер А., Атья М.Ф. Математика в двадцатом столетии. American Mathematical Monthly. Vol. 108. № 7.)

вернуться

160

Здесь (как и в ряде других случаев в этой книге и повсеместно в математике в целом) название — скажем, «Гипотеза Римана» или «формула Эйлера», — стандартно используемое в некотором устоявшемся контексте, смело применяется расширительно, причем иногда в контекстах, очень далеких от исходного и таких, о существовании которых ученый, давший свое имя названию, и не подозревал. Когда при этом хотят вернуться к исходной теореме, формуле, гипотезе и так далее, иногда используют эпитет «классическая». (Примеч. перев.)