Выбрать главу

Математик X: «Колоссально важная работа! Конн не только докажет ГР, но заодно и предложит нам Единую теорию поля!»

Математик Y: «То, что по сути сделал Конн, сводится к замене одной нерешаемой задачи на другую задачу, которая равным образом не решается».

У меня недостаточно подготовки, чтобы выбрать, какая из точек зрения правильна. Но с учетом высокого положения и способностей математиков X и Y я сильно подозреваю, что одна из них наверняка верна…[184]

VI.

Разумеется, активно развиваются и другие подходы к ГР. Алгебраический подход с помощью конечных полей, упомянутый в главе 17, никуда не делся. И, как мы мельком видели в разделе V, этот подход демонстрирует интересные связи с физическим направлением исследований ГР. Аналитическая теория чисел также остается активной областью, способной выдавать сильные результаты.

Имеются два непрямых подхода. Например, есть наша теорема 15.2 о функции M, получаемой накапливанием значений мебиусовой функции μ. Эта теорема, как было сказано, в точности эквивалентна Гипотезе. Специалист по аналитической теории чисел Деннис Хеджхал из университета Миннесоты использует этот подход, чтобы познакомить с Гипотезой Римана нематематическую аудиторию и при этом избежать введения комплексных чисел. Вот как, по его словам (я пересказываю, а не цитирую), выражается ГР.

Выпишем все натуральные числа, начиная с 2. Под каждым числом запишем его простые делители. Затем, игнорируя всякое число, среди делителей которого есть квадрат (или любая более высокая степень, которая по необходимости содержит в себе и квадрат), будем двигаться вдоль чисел, отмечая как «орел» каждое число с четным числом простых делителей и как «решку» — с нечетным. Получаем бесконечную строку из орлов и решек — нечто вроде того, что возникает в опыте по подбрасыванию монеты:

Далее, из классической теории вероятностей хорошо известно, чего ожидать от подбрасывания монеты большое число раз N. В среднем будет 1/2N орлов и 1/2N решек. Но, разумеется, далеко не всегда будут получаться в точности эти значения. Предположим, мы вычли число орлов из числа решек (или наоборот, в зависимости оттого, какое из них больше). Что мы ожидаем по поводу величины этого избытка? В среднем это будет √N, т.е. N1/2. Это было известно уже 300 лет назад, во времена Якоба Бернулли. Если подбрасывать «честную» монету миллион раз, то в среднем получится избыток в тысячу орлов (или решек). Может выйти больше или меньше — но в среднем, коль скоро вы продолжаете подбрасывать монету, т.е. при стремлении N к бесконечности, — величина избытка растет в определенном темпе: не быстрее, чем N1/2+ε для любого сколь угодно малого числа ε. Прямо как у нас в теореме 15.2!

На самом деле теорема 15.2, которая эквивалентна ГР, утверждает, что функция M растет точно так же, как избыток в опыте по подбрасыванию монеты. По-другому утверждение теоремы можно выразить так: свободное от квадратов число является орлом или решкой — т.е. имеет четное или нечетное число простых делителей — с вероятностью 50:50. Такое положение дел выглядит довольно правдоподобным и может на самом деле оказаться верным. Если вы сможете доказать, что это утверждение действительно верно, то вы тем самым докажете и ГР.[185]

VI.

Менее прямой вероятностный подход касается так называемой «модели Крамера». Харальд Крамер (Cramér), несмотря на букву «é» в своей фамилии, был шведом, причем еще одним служащим страховой компании — актуарием в Svenska Livförsöakringsbolaget[186], но одновременно и талантливым лектором, выступавшим с популярными рассказами о математике и статистике.[187] В 1934 году он опубликовал статью, озаглавленную «О простых числах и вероятности», в которой выдвинул идею, что простые числа распределены настолько случайным образом, насколько это вообще возможно.

Одно из следствий, вытекающее из Теоремы о распределении простых чисел (ТРПЧ), которое было продемонстрировано в главе 3.ix, состоит в том, что в окрестности некоторого большого числа N доля простых чисел составляет ~1/ln N. Например, логарифм триллиона равен 27,6310211…, так что в окрестности триллиона примерно одно из каждых 28 чисел простое. Модель Крамера утверждает, что помимо этого ограничения на среднюю частоту их появления простые числа распределены полностью случайно.

вернуться

184

И как минимум один математик в письменном виде выразил сдержанный скептицизм. В рецензии на статью Конна 1999 г. «Следовые формулы в некоммутативной геометрии и нули дзета-функции Римана» Питер Сарнак (не являющийся ни математиком X, ни математиком Y) заметил: «Аналогии и вычисления в статье и в приложениях к ней многозначительны, симпатичны и замысловаты, и по этой причине представляется, что предложено нечто большее, чем просто еще одна эквивалентная переформулировка ГР. Однако рецензенту не очевидно, удастся ли на самом деле использовать развитые здесь идеи, в частности пространство X, для получения каких-нибудь новых результатов о нулях функции L(s, λ)». Функция L(s, λ), о которой пишет Сарнак, представляет собой один из тех аналогов дзета-функции Римана, которые упоминались в главе 17.iii.

вернуться

185

Официально этот подход называется «вероятностная интерпретация Данжуа», по имени французского аналитика Арно Данжуа (1884-1974). Данжуа был профессором математики в Парижском университете с 1922 по 1955 г.

вернуться

186

Это длинное шведское название буквально и означает: «Шведская компания по страхованию жизни». (Примеч. перев.)

вернуться

187

«Прикасаясь к скучным формулам своей волшебной палочкой, он превращал их в поэзию», — вспоминал Гуннар Блом в своем очерке, включенном в собрание трудов Крамера. Крамер (1893-1985) — еще один «бессмертный». Он умер спустя несколько дней после своего 92-летия.