Сама по себе идея выражения функций через их нули не несет в себе особой новизны для тех, кто изучал алгебру в старших классах. Рассмотрим старые добрые квадратные уравнения, выбрав в качестве примера то, которое мы использовали в главе 17.iv, а именно z2 − 11z + 28 = 0 (однако будем писать букву z вместо x, поскольку сейчас мы находимся в царстве комплексных чисел). Левая часть этого уравнения, разумеется, представляет собой функцию, причем полиномиальную функцию (т.е. многочлен). Если мы подставим в нее любое значение аргумента z, то после выполнения определенных арифметических действий получим значение функции. А если, скажем, мы подставим аргумент 10, то значением функции будет 100 − 110 + 28, что дает 18. Если подставим аргумент i, то значением функции будет 27 − 11i.
А каковы решения уравнения z2 − 11z + 28 = 0? Как мы видели в главе 17, это 4 и 7. При подстановке любого из этих чисел в левую часть уравнение превращается в верное равенство, поскольку левая часть оказывается равной нулю. Другой способ выразить то же самое — это сказать, что 4 и 7 являются нулями функции z2 − 11z + 28.
Теперь, зная нули, мы можем разложить эту функцию на множители. Она разлагается на множители как (z − 4)(z − 7). По правилу знаков это можно записать и как (4 − z)(7 − z). Еще один способ записи — это 28(1 − z/4)(1 − z/7). Смотрите: так или иначе, мы выразили функцию z2 − 11z + 28 через ее нули! Разумеется, такое можно делать не только для квадратичных функций. Многочлен пятой степени z5 − 27z4 + 255z3 − 1045z2 + 1824z − 1008 тоже можно записать через его нули (каковыми являются числа 1, 3, 4, 7, 12). Вот как: −1008(1 − z/1)(1 − z/3)(1 − z/4)(1 − z/7)(1 − z/12). Любую полиномиальную функцию можно переписать через значения ее нулей.
Полиномиальные функции обладают интересным свойством с точки зрения теории функций комплексной переменной. Область определения полиномиальной функции составляют все комплексные числа. Полиномиальная функция никогда не «обращается в бесконечность». Нет такого значения аргумента z, при котором оказалось бы невозможным вычислить ее значение. При вычислении значения полиномиальной функции для любого заданного значения аргумента используются только возведение аргумента в положительные целые степени, умножение этих степеней на числа и сложение полученных результатов друг с другом. Такое можно проделать со всяким числом.
Функции, область определения которых составляют все комплексные числа и которые ведут себя достаточно симпатичным образом (для чего имеется точное математическое определение!), называются целыми функциями.[195] Все полиномиальные функции — целые. Показательная функция — тоже целая. Однако рациональные функции, которые мы рассматривали в главе 17.ii, не целые, потому что знаменатели в них могут обращаться в нуль. Функция ln также не является целой: у нее нет значения при нулевом аргументе. Подобным же образом у дзета-функции Римана нет значения при аргументе, равном единице, а потому она не является целой функцией.
Целая функция может не иметь нулей вовсе (как, например, показательная функция: равенство ez = 0 никогда не выполняется), может иметь их несколько (как, например, полиномиальные функции: числа 4 и 7 — нули функции z2 − 11z + 28), а может — бесконечно много (как, например, синус, который обращается в нуль при всех целых кратных числа π).[196] Ну и раз полиномиальные функции выражаются через свои нули, интересно, можно ли все целые функции выразить подобным же образом? Пусть у нас есть какая-нибудь целая функция — назовем ее F, — определяемая бесконечной суммой вида F(z) = a + bz + cz2 + dz3 + …, и пусть еще нам удалось узнать, что у этой функции бесконечно много нулей; назовем их ρ, σ, τ, …. Можно ли выразить данную функцию через ее нули, в виде бесконечного произведения F(z) = а(1 − z/ρ)(1 − z/σ)(1 − z/τ)… — как если бы бесконечная сумма была чем-то вроде «сверхмногочлена»?
195
Употребительных слов, особенно русских, не хватает, подобно тому как, по замечанию автора в главе 3, не хватает греческих букв; целые функции и целые числа имеют мало общего.
196
Хотя здесь нет прямой связи с нашими рассуждениями, я не могу удержаться и не сказать, в качестве интересного добавления, что одна из самых знаменитых теорем в теории функций комплексной переменной касается целых функций. Эту теорему сформулировал Эмиль Пикар (1856-1941). Теорема Пикара утверждает, что если целая функция принимает более одного значения — если, иными словами, она не равна просто-напросто постоянной, — то она принимает