Выбрать главу

Хотя цель данной книги состоит в описании открытий Римана в арифметике и великой Гипотезы, которая берет в них свое начало, нельзя сказать, что эти геометрические исследования не имеют никакого отношения к делу. Общий склад ума Римана, а также все его лучшие математические работы родились из напряжений, возникавших между соображениями двух противоположных свойств. С одной стороны, он был великим глобалистом, всегда склонным воспринимать вещи в полном объеме. Для Римана функция не представляет собой просто множество точек; еще менее она передается каким бы то ни было изобразительным способом типа графика или таблицы и еще менее — набором выражений, содержащих алгебраические формулы. (В одном из немногих засвидетельствованных отрицательных отзывов о ком бы то ни было Риман отмечает, что берлинский математик Готхольд Эйзенштейн «остановился на уровне формального вычисления».) Но что же тогда такое функция? Это объект, который без нарушения правил нельзя лишить ни одного из его атрибутов. Риман воспринимал функцию способом, каким, говорят, шахматные гроссмейстеры воспринимают шахматную партию — всю целиком, как единое целое, Gestalt.

Однако в напряженных отношениях с этой тенденцией была противоположная ей, причем также ясно прослеживающаяся в работах Римана тенденция сводить всякий математический предмет к анализу. «Риман <…> всегда мыслил в аналитических терминах», — говорит Лаугвитц. Писатель имеет в виду анализ в его бесконечно-малом аспекте: пределы, непрерывность, гладкость; локальные свойства чисел, функций и пространств. Если задуматься об этом, то должно показаться довольно странным, что исследование бесконечно малых окрестностей точек и чисел может снабдить нас знанием о глобальных свойствах функций и пространств. Это становится особенно явным в общей теории относительности, где начинают с изучения микроскопических областей пространства-времени, а приходят к осознанию формы Вселенной и рассмотрению предсмертной агонии галактик. Тем, что нам удается рассуждать столь необычным способом и в чистой, и в прикладной математике, мы обязаны главным образом математикам начала XIX века, и более всего — Бернхарду Риману.

Великая лекция Римана была в действительности документом философским в той же мере, что и математическим. В этом смысле много раз отмечавшаяся туманность многих ее мест могла быть сознательным выбором Римана. (Впрочем, см. замечание Фрейденталя ниже.) То, о чем он говорил, касалось природы пространства на самом фундаментальном уровне. А для среднего, довольного собой стареющего профессора того времени — вроде тех людей, что заседали в числе геттингенских слушателей лекции Римана в тот июньский день, — природа пространства была делом решенным. Она была открыта за 70 лет до этого Иммануилом Кантом в его «Критике чистого разума». Пространство представляет собой предсуществующую часть нашего рассудка, посредством которого мы организуем чувственные восприятия, и оно с необходимостью эвклидово, другими словами, плоское — такое, в котором прямая есть кратчайшее расстояние между двумя точками, а сумма углов треугольника равна 180 градусам.

Неэвклидова геометрия, описанная Лобачевским в 1830-х годах, с этой точки зрения воспринималась как философская ересь. Работа Римана была куда большей ересью; в этом могла состоять причина, по которой он представил свои мысли на уровне столь большой общности, что их связь с неэвклидовой геометрией должна была ускользнуть от всех, кроме наиболее математически подкованных людей в сидевшей перед ним аудитории. (Но, конечно, не от Гаусса. Гаусс на самом деле еще ранее сам изобрел неэвклидову геометрию, но не опубликовал своих результатов из опасений, как он писал, «что болваны поднимут шум и гам». В XIX столетии немцы относились к своей философии весьма серьезно.)

В статье из уже упоминавшегося «Словаря научных биографий» Ханс Фрейденталь говорит о философских способностях Римана следующее.

Один из глубочайших и наиболее одаренных воображением умов среди математиков всех времен, он испытывал сильную тягу к философии и на самом деле был великим философом. Если бы он жил и творил дольше, философы признали бы за ним членство в своем цехе.

Я недостаточно подготовлен для того, чтобы судить об истинности этого высказывания. Однако с чем я могу согласиться от всего сердца, так это с другим замечанием Фрейденталя: «Стиль Римана, на который повлияла философская литература, демонстрирует худшие черты немецкого синтаксиса; этот стиль должен представляться шифром всякому, кто не постиг немецкий язык во всей его глубине». Сознаюсь, что хотя у меня есть экземпляр собрания трудов Римана в немецком оригинале — а это один том в 690 страниц — и хотя я приложил все старания, чтобы разобраться в его словах там, где он отклоняется от непосредственно математического изложения, как, например, в своей знаменитой лекции, мое знакомство с его великими мыслями главным образом основано на переводах и вторичных источниках.[72]

вернуться

72

Возможно, следует объяснить, что у математиков особый подход к изучению иностранных языков. Для чтения математических текстов не на своем родном языке глубокое знание этого языка вовсе не требуется. Достаточно выучить несколько десятков распространенных слов и конструкций, используемых при изложении математической канвы: «отсюда следует, что…», «достаточно показать, что…», «без потери общности…» и т.д. Остальное составляют обозначения, такие как √ и ∑, единые во всех языках (хотя и с незначительными «диалектными» отклонениями в зависимости от традиций, принятых в данной стране). Разумеется, некоторые математики — превосходные лингвисты. Андре Вейль (см. главу 17.iii) говорил и читал по-английски, по-немецки, по-португальски, по-гречески, на латыни и на санскрите, помимо своего родного французского. Но я имею в виду обычных математиков.