Выбрать главу

Чтобы посчитать такое, требуется проделать немало арифметических действий, но у математиков есть способы спрямлять подобные вычисления, и я могу твердо заверить вас, что полное нависание в случае сотни карт будет лишь чуточку меньше, чем 2,58868875882, а для триллиона карт — на самую толику меньше, чем 14,10411839041479.

Полученные числа удивительны вдвойне. Во-первых, тем, что вообще удается добиться нависания в 14 с лишним карточных длин, пусть даже для этого понадобится триллион карт. Четырнадцать карточных длин — это более четырех футов, если брать стандартные игральные карты. А во-вторых, если об этом подумать, тем, что числа оказываются именно такими, а не большими. При переходе от 52 к 100 картам мы заработали дополнительное нависание лишь в одну треть длины карты (даже чуть-чуть меньше, чем в одну треть). А затем переход к триллиону — а колода в триллион стандартных игральных карт будет иметь такую толщину, что покроет большую часть расстояния до Луны, — принес нам всего лишь одиннадцать с половиной карточных длин.

Ну а если бы число карт у нас было неограниченным? Какого максимального нависания мы могли бы достичь? Замечательный ответ на этот вопрос состоит в том, что максимального нависания просто нет. Если в запасе имеется достаточное число карт, можно сделать нависание сколь угодно большим. Желаете получить нависание в 100 карточных длин? Пожалуйста, возьмите что-то около 405 709 150 012 598 триллионов триллионов триллионов триллионов триллионов триллионов карт — колоду, высота которой намного превысит размеры известной нам части Вселенной. А можно сделать и большее нависание, и еще большее — настолько большое, насколько захотите, если только у вас есть желание иметь дело с невообразимо большим числом карт. Нависание в миллион карт? Пожалуйста, но, правда, количество необходимых для этого карт будет таким большим, что только для записи этого числа понадобится нормального размера книга — в этом числе будет 868 589 цифр.

III.

Теперь нам предстоит сосредоточить свое внимание на выражении в скобках, а именно

1 + 1/2 + 1/3 + 1/4 + 1/5 + 1/6 + 1/7 + ….

Математики говорят, что это — ряд; ряд означает неограниченно продолжающееся суммирование членов, каждый из которых задается некоторым общим законом. В нашем случае члены ряда 1, 1/2, 1/3, 1/4, 1/5, 1/6, 1/7, … — это обратные величины к обычным натуральным числам 1, 2, 3, 4, 5, 6, 7, ….

Ряд 1 + 1/2 + 1/3 + 1/4 + 1/5 + 1/6 + 1/7 + … играет в математике достаточно важную роль, чтобы иметь собственное название. Он называется гармоническим рядом.

Подведем промежуточный итог. Складывая достаточно большое число членов гармонического ряда, можно получить сколь угодно большой результат. У этой суммы нет предела.

Грубый, но распространенный и доходчивый способ выразить то же самое — это сказать, что гармонический ряд суммируется к бесконечности:

1 + 1/2 + 1/3 + 1/4 + 1/5 + 1/6 + 1/7 + … = ∞.

Хорошо воспитанных математиков учат морщиться при виде таких выражений; но я думаю, что с ними вполне можно иметь дело, если знать опасности, которые вас тут подстерегают. Леонард Эйлер, один из величайших математиков всех времен, использовал подобные выражения постоянно и весьма плодотворно. Но все же правильный, профессиональный математический термин, описывающий то, что здесь происходит, звучит так: гармонический ряд расходится.

Сказать-то я это сказал, но смогу ли я это доказать? Всем известно, что в математике каждый результат надо строго логически доказывать. Результат у нас такой: гармонический ряд расходится. Как его доказать?

Доказательство оказывается довольно простым и опирается только на самую элементарную арифметику. В Средние века его нашел французский ученый Никола Орем (ок. 1323-1382).[1] Орем заметил, что сумма 1/3 + 1/4 больше чем 1/2; равным образом и 1/5 + 1/6 + 1/7 + 1/8 также больше чем 1/2; то же верно и для суммы 1/9 + 1/10 + 1/11 + 1/12 + 1/13 + 1/14 + 1/15 + 1/16. Другими словами, будем брать сначала 2, потом 4, потом 8, потом 16 и т.д. членов гармонического ряда и группировать их вместе; получится бесконечное число таких групп, каждая из которых в сумме превосходит одну вторую. Полная сумма, следовательно, должна быть бесконечной. Не стоит переживать из-за того, что размеры этих групп растут очень быстро: «в бесконечности» полно места, и неважно, сколько групп мы уже образовали, следующая все равно окажется на своем месте и к нашим услугам. Всегда есть возможность добавить еще одну а это и означает, что сумма растет неограниченно.

вернуться

1

Никола Орем (Nicole d'Oresme) был не только математиком, но и естествоиспытателем, философом, физиком, астрономом и экономистом, а также воспитателем Дофина, будущего короля Карла V. (Примеч. перев.)