Выбрать главу

Снова посмотрев на набор графиков, можно заметить кое-что еще: ζ(s) равна нулю всегда, когда s — отрицательное четное число. А если при каком-то аргументе значение функции равно нулю, то этот аргумент называется нулем данной функции. Итак, верно следующее:

2, 4, 6 и все остальные отрицательные четные целые числа являются нулями дзета-функции.

А взглянув на утверждение Гипотезы Римана, мы увидим, что в ней говорится про «все нетривиальные нули дзета-функции». Неужели мы у цели? Увы, нет: отрицательные четные числа и в самом деле нули дзета-функции, но все они до единого — тривиальные нули. Чтобы добраться до нетривиальных нулей, нам надо нырнуть поглубже.

VII.

В качестве добавления к этой главе еще чуть разовьем наш анализ, применив к выражению (9.2) два результата из тех, что были сформулированы в главе 7. Выпишем это выражение снова:

1/(1 − x) = 1 + x + x2 + x3 + x4 + x5 + x6 + …

Все, что я собираюсь сделать, — это проинтегрировать обе части. Поскольку интеграл от 1/x равен ln x, я надеюсь, что не слишком злоупотреблю вашим доверием, если скажу (не останавливаясь на доказательстве), что интеграл от 1/(1 − x) равен −ln(1 − x). С правой частью равенства все еще проще. Можно просто интегрировать один член за другим, используя правила интегрирования степеней, сформулированные в таблице 7.2. Результат (впервые полученный сэром Исааком Ньютоном) имеет вид:

−ln(1 − x) = x + x2/2 + x3/3 + x4/4 + x5/5 + x6/6 + ….

Будет чуть удобнее, если обе части умножить на −1:

ln(1 − x) = −xx2/2 − x3/3 − x4/4 − x5/5 − x6/6 − … (9.3)

Несколько странно, хотя для наших целей и несущественно, что выражение (9.3) верно при x = −1, тогда как выражение (9.2), с которого мы начали, при этом неверно. Действительно, при x = −1 выражение (9.3) дает следующий результат:

ln 2 = 1 − 1/2 + 1/31/4 + 1/51/6 + 1/7 − … (9.4)

Отметим сходство с гармоническим рядом. Гармонический ряд… простые числа… дзета-функция…. Во всей этой области господствует логарифмическая функция.

Правая часть выражения (9.4) несколько своеобразна, хотя этого и не заметить невооруженным взглядом. Она в действительности является стандартной (из учебников) иллюстрацией того, насколько хитрой вещью являются бесконечные ряды. Этот ряд сходится к ln 2, что составляет 0,6931471805599453…, но только если складывать члены именно в этом порядке. Если складывать в другом порядке, ряд может сойтись к чему-нибудь другому — или может даже вообще не сойтись![76]

Рассмотрим, например, такую перестановку членов ряда: 1 − 1/21/4 + 1/31/61/8 + 1/51/10 − …. То же самое, но с расставленными скобками: (1 − 1/2) − 1/4 + (1/31/6) − 1/8 + (1/51/10) − …, т.е. 1/2(1 − 1/2 + 1/31/4 + 1/5 − …). Сумма ряда с переставленными членами равна половине сумм исходного ряда![77]

вернуться

76

К слову, этот факт был впервые доказан Бернхардом Риманом.

вернуться

77

Чтобы суммировать ряд к другому значению, необходимо переставить бесконечное число слагаемых; в отношении конечных сумм, разумеется, верен закон перестановочности для сложения. (Примеч. перев.)