Выбрать главу

Введем три новых профессиональных термина. Модуль комплексного числа — это расстояние по прямой от этого числа до нуля. Обозначается модуль как |z|, что произносится «модуль зет». По теореме Пифагора модуль комплексного числа a + bi есть . Это всегда положительное вещественное число или нуль. Фаза комплексного числа — это угол, составленный с положительной частью вещественной оси, измеряемый в радианах. (Один радиан равен 57,29577951308232… градуса; 180 градусов — это π радиан.) Фазу по соглашению считают углом, лежащим между −π (не включая) до π (включая), а обозначается она как Φ(z).[93] У положительных вещественных чисел фаза равна нулю, у отрицательных вещественных она равна −π, у положительных мнимых равна π/2, а у отрицательных мнимых фаза равна −π/2.

И наконец, комплексным сопряжением комплексного числа называется его зеркальное отображение относительно вещественной оси. Комплексное сопряжение числа a + bi есть a − bi. Обозначается оно как z', что произносится как «зет-с-чертой».{2} Если перемножить комплексное число с его сопряженным, то получится вещественное число: (a + bi)×(a − bi) = a2 + b2, что, как видно, есть квадрат модуля числа a + bi. На этом и основан фокус, позволяющий делить комплексные числа. Используя введенные обозначения, можно записать z×z' = |z|2, а фокус с делением выражается как z/w = (z×w')/|w|2.

Модуль комплексного числа −2,5 + 1,8i, показанного на рисунке 11.2, равен √9,49, то есть около 3,080584, фаза составляет 2,517569 радиана (или, если вам так больше нравится, 144,246113 градуса), а сопряженное число, конечно, есть −2,5 − 1,8i.

VI.

Чтобы продемонстрировать комплексную плоскость в действии, я чуть-чуть потренируюсь в анализе с комплексными числами. Рассмотрим бесконечный ряд из выражения (9.2):

1/(1 − x) = 1 + x + x2 + x3 + x4 + x5 + x6 + … (x лежит строго между −1 и 1).

Поскольку здесь не предпринимается никаких действий, кроме сложения, умножения и деления чисел, нет причин, по которым x нельзя было бы сделать комплексным числом. Работает ли эта формула для комплексных чисел? Да, при определенных условиях. Пусть, например, x равен 1/2i. Тогда ряд сходится. Имеем

1/(1 − i/2) = 1 + 1/2i + 1/4i2 + 1/8i3 + 1/16i4 + 1/32i5 + 1/64i6 + …

Левая часть вычисляется с помощью рассмотренного выше фокуса с делением как 0,8 + 0,4i. Правую часть можно упростить, используя тот факт, что i2 = −1:

0,8 + 0,4i = 1 + 1/2i1/4 + 1/8i1/16 + 1/32i − 1/64 + …

Можно пройти правую часть этой формулы на комплексной плоскости. Идея видна из рисунка 11.3. Начнем из точки 1 (которая, разумеется, расположена на вещественной оси). Оттуда идем на север, что соответствует прибавлению 1/2i. Затем на запад на 1/4 потом на юг в соответствии с вычитанием 1/8i и т.д. Получается спираль, замыкающаяся на комплексном числе 0,8 + 0,4i. Вот вам анализ в действии — бесконечный ряд сходится к этому пределу.

Рисунок 11.3. Анализ на комплексной плоскости.

вернуться

93

В наше время фазу чаще называют «аргументом» и обозначают Arg(z). Я использовал старое название (в оригинале «amplitude» и Am(z) — пер.), отчасти из уважения к Г.Х. Харди (см. главу 14.ii), а отчасти чтобы избежать путаницы со словом «аргумент» для обозначения «числа, к которому применяется функция». (В переводе, следуя желанию автора избежать подобной путаницы, использован термин «фаза», который несет в себе некоторые «физические» коннотации, но в целом достаточно ясно указывает на то, что он призван обозначать. — Примеч. перев.)