Его доклад был озаглавлен «Математические проблемы». Слова, которыми он открывался, стали так же близки математикам XX столетия, как Геттисбергская речь — американским школьникам.[100] «Кто из нас не хотел бы приоткрыть завесу, за которой скрыто наше будущее, чтобы хоть одним взглядом проникнуть в предстоящие успехи нашего знания и тайны его развития в ближайшие столетия?» Гильберт продолжал говорить о том, как важны трудные проблемы, которые концентрируют внимание математиков, способствуя созданию новых направлений развития и новых знаковых систем, и которые также ведут математиков ко все более и более высоким уровням обобщения. Он закончил выступление списком из 23 проблем, «исследование которых может значительно стимулировать дальнейшее развитие науки».
Мне хотелось бы отправиться с вами в обзорное путешествие по 23 проблемам Гильберта.[101] Но тогда эта книга станет недопустимо длинной. А кроме того, имеется обширная, приспособленная к различным уровням понимания литература, с помощью которой такое путешествие осуществимо.[102] Я лишь замечу попутно, что самая первая из проблем Гильберта относилась к упоминавшейся в предыдущей главе континуум-гипотезе, которая посвящена самой сути запутанного вопроса о природе вещественных чисел и возражениям, выдвигавшимся против них Кронеккером. О континуум- гипотезе также имеется обширная литература. Хорошая библиотека или хороший интернет-поисковик вполне удовлетворят любопытство любого, кто захочет обратиться к этой завораживающей задаче.[103]
Только одна из проблем Гильберта — восьмая — имеет прямое отношение к теме нашей книги. Вот она — в переводе Мэри Уинстон Ньюсон из Bulletin of the American Mathematical Society[104]:
В теории распределения простых чисел в последнее время сделаны существенные сдвиги Адамаром, Валле Пуссеном, Мангольдтом и другими. Для полного решения проблемы, поставленной в исследовании Римана «О числе простых чисел, не превышающих данной величины», необходимо прежде всего доказать справедливость исключительно важного утверждения Римана: все нули функции ζ(s), определяемой рядом
имеют вещественную часть, равную 1/2, если не считать известных отрицательных целочисленных нулей. Как только это доказательство будет получено, то дальнейшая задача будет заключаться в том, чтобы использовать бесконечный ряд Римана для более точного определения числа простых чисел и в особенности выяснить, будет ли разность между числом простых чисел, меньших данного числа x, и интегральным логарифмом от x действительно не выше половинного порядка при неограниченно возрастающем x. Далее, действительно ли те члены формулы Римана, которые зависят от первых комплексных нулей функции ζ(s), обусловливают сгущение простых чисел, которое обнаружено при подсчете числа простых чисел.
Тем читателям, которые до сих пор не потеряли нить, этот пассаж должен быть понятен хотя бы отчасти. Я надеюсь, что все целиком приобретет смысл, когда мы доберемся до конца книги. Сейчас главное для нас — тот факт, что Гипотеза Римана рассматривалась как один из 23 больших и сложных вопросов, стоящих перед математиками в XX столетии, и именно так ее рассматривал Давид Гильберт— вероятно, величайший среди математиков, активно работавших в 1900 году.[105]
В главе 10.iii мы кратко упомянули причину, определявшую важность Гипотезы Римана на рубеже столетия. Основным фактором было то, что Теорема о распределении простых чисел была к этому моменту доказана. С 1896 года с математической точностью было известно, что π(N) ~ Li(N), и всеобщее внимание было приковано к этому значку «волны» посередине. Да, по мере того как N неограниченно растет, делаясь все больше и больше, π(N) пропорциональным образом становится все ближе и ближе к Li(N). Но какова природа этой близости? Нельзя ли указать лучшее приближение? И вообще, насколько приближенно это приближение? Каков «остаточный член»?
Когда вопрос с ТРПЧ решился и математики смогли свободно предаваться мыслям об этих «второстепенных» вещах, они обнаружили, что их взор прикован к Гипотезе Римана. В работе Бернхарда Римана 1859 года ТРПЧ не была, конечно, доказана, но та работа явственно подсказывала, что теорема эта верна, и, более того, там предлагалось выражение для остаточного члена. В это выражение входили все нетривиальные нули дзета-функции. Точное знание о том, где, собственно, находятся эти нули, стало делом неотложной важности.
100
101
На самом деле Гильберт представил аудитории 10 из этих проблем, поскольку те, кто заранее прочел печатный вариант его доклада, посоветовали ему сократить устный вариант. Все 23 проблемы перечислены в печатном варианте, и на них обычно ссылаются именно по номеру в этой работе. Те проблемы, которые он в действительности огласил собравшейся в Сорбонне аудитории, имеют номера 1, 2, 3, 7, 8, 13, 16, 19, 21 и 22. Дополнительная путаница возникает из-за того, что некоторые из 23 пунктов, которые выделил Гильберт, всего лишь очерчивают области исследований и небезоговорочно являются проблемами. Характерен пункт 2: «Исследовать согласованность аксиом арифметики». Этим могут объясняться различные схемы нумерации проблем Гильберта, которые может встретить читатель. Например, Эндрю Ходжес в своей биографии Алана Тьюринга насчитывает 17 проблем Гильберта, а не 23, причем доказательство Гипотезы Римана приводится под номером 4, а не 8. Те из выделенных Гильбертом пунктов, которые составляют четко определенные проблемы, в настоящее время все решены, за единственным исключением Гипотезы Римана.
102
Лучший из таких известных мне рассказов длиною в книгу — это
103
Хорошее популярное изложение можно найти в книге Джона Л. Касти
104
Перевод с немецкого М.Г. Шестопал и А.В. Дорофеевой по изданию: Проблемы Гильберта: Сб. под общ. ред. П.С. Александрова. М.: Наука, 1969.
105
Большинство математиков того времени присвоили бы этот титул Анри Пуанкаре (1854-1912). Венгерская академия наук так и поступила, наградив Пуанкаре своей первой премией Бойаи как «математика, достижения которого за последние 25 лет внесли наибольший вклад в прогресс математики». Вторая премия Бойаи была присуждена в 1910 г. Гильберту.