Кроме того, заметной активностью отличались британские ученые, занятые в наиболее абстрактных областях математики: Артур Кэли и Дж. Дж. Сильвестр изобрели матрицы (о них мы еще поговорим ниже) и теорию алгебраических инвариантов. Джордж Буль открыл целый новый материк «оснований» — математической логики, которую он называл «законами мышления». (Можно поспорить по поводу того, действительно ли этот предмет находится так уж далеко по шкале абстракции; сам Буль заявлял, что его намерением было сделать логику частью прикладной математики. Однако мне кажется, что математическая логика достаточно абстрактна для большинства из нас, простых смертных.) Любопытно отметить, что за неделю до того, как Гильберт выступил на Парижском конгрессе, тот же актовый зал Сорбонны был зарезервирован для Международного философского конгресса. Один из прочитанных там докладов назывался «Представления о порядке и абсолютном положении в пространстве и времени». Докладчиком был молодой английский логик, также из Тринити-колледжа, по имени Бертран Рассел, который спустя 10 лет вместе с Элфредом Нортом Уайтхедом стал автором классического трактата по математической логике (точнее, логифицированной математике) — Principia Mathematica.
Таким образом, в Британии полным ходом развивалась наименее абстрактная и наиболее абстрактная математика, а огромное количество всего, требующего среднего уровня абстракции, — теория функций, теория чисел, большая часть алгебры — было оставлено для континентальной Европы. В анализе — наиболее плодородном разделе математики XIX века — присутствие британцев практически незаметно. К концу столетия они фактически исчезли даже из тех областей, где традиционно были сильно представлены. Лишь семь британских математиков присутствовали на Парижском конгрессе; по этому показателю Британия стояла ниже Франции (90), Германии (25), США (17), Италии (15), Бельгии (13), России (9), Австрии и Швейцарии (по 8 каждая). В плане математики Британия в 1900-х годах была тихой заводью.
Но и в тихой заводи, как известно, черти водятся. Тринити-колледж в Кембридже, где обитал Литлвуд, поддерживал сильную математическую традицию. Некогда здесь работал сэр Исаак Ньютон (1661-1693), и колледж мог похвастаться тем, что в течение XIX столетия выпустил из своих стен нескольких гениев от математики и физики: это Чарльз Бэббидж, которого обычно считают изобретателем компьютера; астроном Джордж Эйри, именем которого названо семейство математических функций; логик Огастес де Морган; алгебраист Артур Кэли; Джеймс Клерк Максвелл и другие, несколько менее известные имена. Бертран Рассел защитил диссертацию в Тринити-колледже в 1893 году, стал сотрудником[120] в 1895-м и продолжал преподавать там в то время, когда сотрудником стал и Харди. История Тринити-колледжа в XX столетии оказалась несколько менее однородной. Отсюда происходили основные участники кембриджской шпионской сети[121] а также несколько блумсберийцев[122]. Однако в том, что касается математики в первые годы столетия, Тринити-колледж был прежде всего местом, где работал Г.X. Харди — тот самый Харди из воспоминаний Литлвуда. Именно Харди, как никто другой, пробудил английскую чистую математику от долгого сна.
Когда в 1897 году Харди трудился в Тринити-колледже над диссертацией, на глаза ему попался знаменитый в то время учебник Cours d'Analyse[123] написанный французским математиком Камилем Жорданом. Жордан известен тем, кто изучает теорию функций комплексной переменной, поскольку в ней есть теорема Жордана, утверждающая примерно следующее: несамопересекающаяся замкнутая плоская кривая (например, окружность) разбивает плоскость на две части: внутреннюю и внешнюю. Эту теорему необычайно трудно доказать — Эстерман говорит о собственном доказательстве Жордана как об «интеллектуальном подвиге». По-видимому, Cours d'Analyse произвел на Харди примерно такое же впечатление, какое Гомер в переводе Чапмена произвел на Китса.[124]
120
В Тринити это означало должность лектора, что предполагало регулярную стипендию и право занимать квартиру в колледже и ужинать в «зале» (столовой). Это не обязательно включало в себя перспективу получения там постоянной работы. (Речь идет о том, что репутация кембриджского Тринити-колледжа столь высока, что его администрация могла позволить себе не давать обещания постоянной работы при приеме на должности, которые во многих других местах предполагали со стороны университета подобные обязательства. —
121
В середине 1930-х гг. советская разведка завербовала пятерых студентов старших курсов из Кембриджа; это были Гай Берджесс, Доналд Маклин, Ким Филби, Энтони Блант и Джон Кернкросс. Все члены этой «кембриджской пятерки», как их называли в Советском Союзе, со временем заняли высокое положение в британских политических и разведывательных учреждениях в 1940-х и 1950-х гг. и передавали жизненно важные сведения в СССР в течение Второй мировой войны и холодной войны. Четверо из пяти были из Тринити-колледжа, а пятый — Маклин — из Тринити-холл (отдельного и меньшего колледжа).
122
Литтон Стрэчи, Леонард Вулф, Клайв Белл, Десмонд Маккарти, Сэксон Сидни-Тернер и оба брата Стивен (Тоби и Эдриен) — все были из Тринити. Но Джон Мейнард Кейнс, Роджер Фрай и Э.М. Форстер — из Кингс-колледжа. (Созданная в 1906 г. группа «Блумсбери» объединила молодых людей, интересы которых были связаны с искусством. Центром группы была семья Стивен, где кроме Тоби и Эдриена были и две сестры, Ванесса и Вирджиния. Ванесса вскоре вышла замуж за художника Клайва Белла, а Вирджиния (Вирджиния Вулф, 1882-1941) вышла в 1912 г. за известного журналиста Леонарда Вулфа. В 1910 г. в среде блумсберийцев появился Р. Фрай, игравший важную роль в культурной жизни Англии тех лет. —
124
Имеется в виду известный всякому английскому школьнику восторженный сонет поэта-романтика Джона Китса (1795-1821), написанный сразу по прочтении «Одиссеи» в далеком от оригинала, но весьма экспрессивном «ренессансном» переводе Джорджа Чапмена (1559?_1634). Сонет заканчивается строками в переводе С. Сухарева: