386. Две восьмиконечные звезды. Головоломки с пяти-, шести- и семиконечными звездами приводят нас к восьмиконечной звезде. Эту звезду можно образовать двумя различными способами (см. рисунок); здесь приводится и решение для первого варианта. Числа от 1 до 16 расположены таким образом, что сумма четырех из них вдоль каждой прямой равна 34. Если вместо каждого числа вы подставите разность между ним и 17, то получите дополнительное решение.
Если читатель попытается найти какое-нибудь решение для другой звезды, то, даже зная решение, приведенное выше, он убедится, что этот орешек расколоть не так-то просто. Однако я представлю вам головоломку в легкой и занимательной форме. Оказывается, что любое решение для первой звезды можно автоматически преобразовать в решение для второй, если правильно взяться за дело. Каждая прямая из четырех чисел в одном случае появится и в другом, изменится лишь порядок чисел. Располагая этими сведениями, вам нетрудно будет найти решение и для второй звезды.
387. Гарнизоны фортов. Перед вами на рисунке изображена система фортификационных сооружений. Всего имеется 10 связанных между собой фортов, цифры обозначают численность размещенных в них небольших гарнизонов. Командующий решил передислоцировать гарнизоны таким образом, чтобы вдоль каждой из пяти прямых размещалось по 100 человек.
Не могли бы вы указать, как это следует сделать?
Гарнизоны должны передислоцироваться целиком, не будучи разбитыми на части. Эта головоломка с фишками весьма занимательна и не очень трудна.
388. Карточный пятиугольник. Набросайте на большом листе бумаги пятиугольник. Затем положите все карты одной масти, исключив валета, даму и короля, так, чтобы суммы очков трех карт, лежащих на любой стороне пятиугольника, равнялись между собой[19]. Можно заметить, что приведенное на рисунке размещение карт не удовлетворяет нашему условию. Однако после того, как вы найдете соответствующее правило, карты можно будет раскладывать, не задумываясь. Решений здесь существует очень мало.
389. Головоломка с семиугольником. Разместите в кружках числа от 1 до 14 (см. рисунок) так, чтобы три числа на каждой из сторон в сумме давали 19.
390. Розы, трилистники и чертополох. Разместите числа от 1 до 12 (по одному числу в каждой картинке) таким образом, чтобы совпали семь их сумм: вдоль каждого из двух центральных столбцов, вдоль каждой из двух центральных строк, по всем четырем розам, по всем четырем трилистникам, по всему чертополоху.
391. Магический шестиугольник. На помещенном здесь рисунке показано, как можно разместить числа от 1 до 19, чтобы суммы трех чисел вдоль каждой из 12 прямых равнялись 23. Шесть прямых совпадают, конечно, с шестью сторонами шестиугольника, а шесть остальных проходят через центр.
Можно ли иначе расставить числа, чтобы сумма по любому из 12 направлений по-прежнему составляла 23? Существует только одно такое размещение чисел.
392. Головоломка с колесом. Разместите числа от 1 до 19 в 19 кружках (см. рисунок) так, чтобы сумма любых трех чисел на одной прямой равнялась 30. Сделать это нетрудно.
393. У ручья. Существует общее мнение, что головоломки, в которых требуется отмерить некоторое количество жидкости, можно решить только путем ряда проб, однако в подобного рода случаях можно найти общие формулы для решений. Воспользовавшись как-то преимуществами неожиданного досуга, я рассмотрел этот вопрос более внимательно. В результате обнаружились весьма интересные вещи. Рассмотрим, например, простейший случай, когда некий человек приходит к ручью только с двумя сосудами и хочет отмерить нужное количество воды. Если мы имеем дело, скажем, с бочкой вина, то у нас могут возникнуть разного рода сложности, связанные с тем, пуста ли бочка или полна, известны ли нам ее вместимость и содержимое или нет, допускается ли потеря вина или нет и можно ли переливать вино обратно в бочку. В случае у ручья все эти сложности исчезают. Может быть, задача упростилась настолько, что говорить о ней как о головоломке вообще не имеет смысла? Давайте посмотрим.
Человек приходит к ручью с двумя сосудами вместимостью соответственно 15 и 16 л. Каким образом он может отмерить ровно 8 л воды за наименьшее число операций? Наполняя сосуд, опустошая его или переливая воду из одного сосуда в другой, мы совершаем одну операцию.
Эта головоломка нетрудна, однако мне кажется, что читатель найдет ее весьма занимательной и поучительной. Вряд ли стоит добавлять, что никаких уловок, вроде отметок на сосудах и наклонов последних, не допускается.