Выпишем последовательные решения (в целых числах) уравнения 2x2 - 1 = y2:
| x | y |
| 1 | 1 |
| 5 | 7 |
| 29 | 41 |
| 169 | 239 |
| 985 | 1393 |
и т. д. Тогда целая часть[37] x/2 даст нам номер дома, а целая часть y/2 — общее число домов. Так (опуская тривиальный случай 0—0), мы получаем 2—3, 14—20, 84—119, 492—696 и т.д.
169. На нечетной стороне улицы номер дома равен 239, а всего на ней расположено 169 домов. На четной стороне улицы номер дома равен 408, а всего на ней расположено 288 домов.
В первом случае мы ищем решение в целых числах уравнения 2x2 - 1 = y2. Получаем следующие ответы:
| Число | Номер |
| домов x | дома y |
| 1 | 1 |
| 5 | 7 |
| 29 | 41 |
| 169 | 239 |
| 985 | 1393 |
и т. д.
Во втором случае мы ищем решение в целых числах уравнения 2(x2 + x) = y2. Получаем следующее:
| Число | Номер |
| домов x | дома y |
| 1 | 2 |
| 8 | 12 |
| 49 | 70 |
| 288 | 408 |
| 1681 | 2378 |
и т. д.
Эти два случая, равно как и предыдущие две головоломки, похожи друг на друга и используют хорошо известное уравнение Пелля.
170. Ошибка Хильды состояла в том, что заданное число она умножила не на 409, а на 49. Разделив величину от полученной погрешности на разность этих чисел, получим требуемое число 912.
171. Семнадцать лошадей требовалось поделить в пропорциях: ½, ⅓, . Это не означает, что сыновья должны получить такие доли от числа 17. Пропорции можно записать также в виде
,
и
. так что сыновья получат соответственно по 9, 6 и 2 лошади каждый и завещание будет строго соблюдено. Следовательно, нелепый старый метод, о котором упомянул Проджерс, случайно приводит к правильному решению.
Один читатель прислал мне следующее хитроумное решение:
172. Перечислим шесть прямоугольных треугольников, имеющих одинаковый, наименьший из возможных (720), периметр: 180, 240, 300; 120, 288, 312; 144, 270, 306; 72, 320, 328; 45, 336, 339; 80, 315, 325.
173. Запишем следующую последовательность чисел, впервые исследованную Леонардо Фибоначчи (родился в 1175 г.), который практически ввел в европейский обиход привычные нам арабские цифры:
Каждое последующее число равно сумме двух предыдущих. Сумма всех чисел, от первого до данного на 1 меньше числа, идущего через один после данного. Если удвоить любой член последовательности и прибавить к нему предыдущий, то получится член, который следует через один после данного. Далее, в первый год приплод будет составлять 0 телок, во второй 1, на третий 1, на четвертый 2 и т. д. При этом как раз и получатся члены данной последовательности. Двадцать пятый член равен 46 386, и если мы сложим все 25 членов, то получим правильный ответ 121 392. Но на самом деле нет необходимости выполнять это сложение. Найдя, двадцать четвертый и двадцать пятый члены, мы просто скажем, что 46 368, умноженное на 2, плюс 28 657 равно 121 393, и вычтем затем 1.
174. Взяв любое число, а потом другое, равное 1 плюс дробь, у которой в числителе стоит 1, а в знаменателе число, на 1 меньшее данного, мы получим пару чисел, дающих в сумме и в произведении одно и то же. Вот несколько примеров: 3 и 1½, 4 и 1⅓, 5 и 1¼ и т. д. Следовательно, получив 987 654 321, я немедленно написал 1. Сумма и произведение равны в этом случае 987 654 322
.
Пару 2 и 2 рассматривают как исключение потому, что знаменатель в этом случае равен 1, а второе число тоже оказывается целым 1 = 2. Но можно заметить, что и этот случай подчиняется общему правилу. Число может оказаться как целым, так и дробным, а в условии не говорится, что мы должны найти обязательно целое число, поскольку тогда единственным решением действительно был бы случай 2 и 2. Разумеется, допускаются и десятичные дроби, как, например, 6 и 1,2; 11 и 1,1; 26 и 1,04.
Итак, соответствующее число, парное к n, имеет вид
175. Наименьшее возможное решение имеет вид
37
Целой частью числа называется наибольшее целое число, не превосходящее данное. —