Выбрать главу

Сделав это открытие, Уинфри выявил связь между двумя огромными корпусами знания, которые в прошлом лишь в редких случаях обращали внимание друг на друга. Одним из них является нелинейная динамика – наука о сложных путях, по которым происходит эволюция систем во времени; другим является статистическая механика – отрасль физики, которая изучает коллективное поведение гигантских систем атомов, молекул или других простых элементов. Тот и другой корпусы знания обладали достоинствами, которые компенсировали слабости другого. Нелинейная динамика хорошо подходила для малых систем с небольшим количеством переменных, но не могла справиться с большими совокупностями частиц, которые не составляли никакой проблемы для статистической механики. С другой стороны, статистическая механика хорошо подходила для анализа систем, пришедших в состояние равновесия, но не могла справиться со скачками колебательных процессов и всего остального, что изменяется во времени.

Уинфри удалось проложить путь к некой гибридной теории, которая обещала стать гораздо более мощной, чем нелинейная динамика и статистическая механика по отдельности. Это обещало стать важным шагом в развитии науки, который в конечном счете помог бы разрешить загадки спонтанного формирования порядка во времени и в пространстве. А на более практическом уровне это означало, что аналитические методы статистической физики могли теперь дать ответ на вопрос о том, как клеткам мозга, светлячкам и прочим объектам живой материи удается синхронизировать друг друга.

Спустя несколько лет о работе Уинфри стало известно молодому японскому физику по имени Йосики Курамото. Его также увлекал феномен самоорганизации во времени, и он хотел найти способ проникнуть в математическую суть этого феномена. В 1975 г. он сосредоточился на изучении более простой и абстрактной версии модели Уинфри и в конечном счете ему удалось показать, как можно решить эту задачу.

Это было поистине выдающееся достижение. Речь шла о системе бесконечно большого числа дифференциальных уравнений, причем все эти дифференциальные уравнения были нелинейными и связаны друг с другом. Такие вещи практически не поддаются решению. Немногие исключения из этого правила подобны бриллиантам. Такое сравнение представляется вполне оправданным ввиду математической красоты этих исключений, а также благодаря свету, который они проливают на внутренние аспекты нелинейности. В данном случае анализ, выполненный Курамото, выявил сущность групповой синхронизации.

На первый взгляд не так-то просто понять, что же такого особенного в структуре модели, предложенной Курамото. Как и в работе Винера, модель Курамото описывает огромную популяцию осцилляторов, характеризующуюся колоколообразной кривой распределения естественных частот; как и в модели Уинфри, каждый осциллятор одинаково взаимодействует со всеми остальными осцилляторами[43]. Важнейшая инновация, предложенная Курамото, заключается в замене функций влияния и чувствительности на особый вид взаимодействия – очень симметричное правило, которое воплощает и уточняет концепцию подтягивания частот, предложенную Уинфри.

Природу этого взаимодействия легче всего понять для популяции, состоящей лишь из двух осцилляторов. Вообразите их как друзей, бегущих вместе по дорожке стадиона. Поскольку эти осцилляторы – друзья, они хотят разговаривать во время бега, поэтому каждый из них несколько корректирует предпочтительную для себя скорость бега. Правило Курамото заключается в том, что быстрый бегун несколько замедляется, а медленный бегун ускоряет свой бег в такой же степени. (Если быть более точным, величина этой коррекции является функцией синуса угла между ними, умноженного на число, называемое силой связи; это число определяет максимально возможную коррекцию.) Это корректирующее действие ведет к синхронизации осцилляторов. Однако, если разность их естественных скоростей оказывается слишком большой по сравнению с силой связи, они не смогут компенсировать разницу в своих физических способностях. Более быстрый бегун постепенно оторвется от своего более медленного товарища; в этом случае им обоим следовало бы подумать о выборе более подходящего для себя партнера по бегу трусцой. Математическая привлекательность этого правила заключается в его симметричности. В отличие от первоначальных формул Уинфри, в этом случае на беговой дорожке нет каких-либо особых мест (когда разные места соответствуют разным характерным событиям в биологическом цикле активности). Для Курамото все места неразличимы между собой. Нет никаких вех. По сути, бегуны не могут узнать, в каком именно месте они находятся, поэтому они бегут молча – никто ничего не выкрикивает, никто ни к кому не прислушивается, – но при этом они внимательно присматриваются друг к другу. Во время бега они вносят соответствующие коррективы в свою скорость, используя формулу, которая зависит лишь от расстояния между ними, а не от места на дорожке, в котором они оказались.

вернуться

43

Оригинальным материалом – предельно краткой заметкой – является статья Y. Kuramoto, “Self-entrainment of a population of coupled nonlinear oscillators,” опубликованная в материалах международного симпозиума International Symposium on Mathematical Problems in Theoretical Physics, под ред. H. Araki (Springer-Verlag: Lecture Notes in Physics, vol. 39, 1975), pp. 420–422. Более полезная интерпретация приведена в книге Y. Kuramoto, Chemical Oscillations, Waves, and Turbulence (Berlin: Springer-Verlag, 1984). Обзор этой модели и ее математический анализ, который будет полезен преподавателям, приведен в статье Steven H. Strogatz, “From Kuramoto to Crawford: Exploring the onset of synchronization in populations of coupled oscillators,” Physica D 143 (2000), pp. 1–20.