Выбрать главу

Через несколько часов после восхода солнца я позвонил своему сотруднику Ренни Миролло, чтобы соотщить ему приятную новость. Я начал описывать свои соображения относительно «осцилляторной жидкости», но он быстро прервал меня: «К чему вся эта софистика?» Будучи «чистым» математиком, он никогда не изучал механику жидкостей и доверял лишь уравнениям, не прибегая к помощи воображения. Мои вычисления казались ему весьма сомнительными. Но я был уверен в своей правоте. Несколько позже в тот же день я вернулся к себе в офис и убедился в том, что предсказанные мною скорости нарастания идеально совпадали с результатами компьютерного моделирования. Ренни быстро заключил мир с «осцилляторной жидкостью».

Вместе с Ренни мы решили вопрос устойчивости некогерентного состояния по другую сторону порога, где интервал частот достаточно большой, аналогично температурам выше точки замерзания. Мы ожидали, что некогерентность должна теперь стать устойчивой. Но вместо этого уравнения указывали на то, что она «нейтрально устойчива» – очень редкий, пограничный случай, когда переходные возмущения ни нарастают, ни затухают.

Вообразите, например, маленький шарик, который находится на дне чашки с полусферической формой внутренней поверхности. Если такой шарик переместить в любую другую точку на внутренней поверхности чашки, он скатится обратно на дно, которое является точкой устойчивого равновесия. Теперь допустим, что форму внутренней поверхности чашки можно регулировать: с помощью некоего рычажка вы можете постепенно делать ее более плоской (то есть придавать ей форму с меньшей кривизной). Дно по-прежнему остается устойчивым, но все же менее, чем прежде: шарик, перемещенный в любую другую точку на внутренней поверхности чашки, медленнее скатывается в точку устойчивого равновесия. По мере того как вы все больше поворачиваете рычажок регулирования кривизны, форма внутренней поверхности чашки становится все более плоской. Когда рычажок регулирования достигнет некого критического деления, внутренняя поверхность чашки станет совершенно плоской и горизонтальной, а в результате дальнейшего изменения положения рычажка она станет похожа на выпуклую контактную линзу (слабо выраженная куполообразная форма), превратившись в конечном счете в выпуклую полусферу. В ходе такого постепенного превращения вогнутое дно чашки превратилось в куполообразную выпуклость. Теперь, если шарик слегка подтолкнуть, он скатится на край дна: состояние равновесия оказалось неустойчивым. Наш регулировочный рычажок оказался на критической границе между устойчивостью и неустойчивостью, когда контактная линза стала совершенно плоской. В этом – и только в этом – положении регулировочного рычажка равновесие нельзя назвать ни устойчивым, ни неустойчивым. Шарик находится в состоянии неопределенности; можно сказать по-другому: это состояние является нейтрально устойчивым. Если шарик сместить с этого положения нейтрального равновесия, он не вернется в исходное положение, но и не скатится в какое-то другое положение.

Как следует из этой метафоры, нейтральная устойчивость обычно имеет место лишь в переходных состояниях, при неких критических значениях параметров системы («рычажков», которые управляют ее свойствами). Но модель Курамото нарушала это правило. Ее некогерентное состояние упрямо оставалось нейтрально устойчивым, даже когда мы расширяли колоколообразную кривую, чтобы сделать популяцию более разнородной. Изменение положения нашего «рычажка» в достаточно широком диапазоне значений параметров не оказывало никакого влияния.

Мы обсудили этот необычный результат с Полом Мэтьюзом, преподавателем прикладной математики в Массачусетском технологическом институте. Пол провел ряд сеансов компьютерного моделирования, результаты которых, однако, повергли нас в еще большее недоумение. Он протестировал устойчивость другим способом, вычислив поведение параметра порядка на достаточно продолжительном отрезке времени, и обнаружил, что значение этого параметра снижается по экспоненциальному закону – что было, вообще говоря, характерным признаком устойчивости, а не нейтральной устойчивости. Теперь мы оказались по-настоящему озадаченны: некогерентность была нейтральной по одному показателю, но устойчивой по другому показателю.

Спустя несколько недель Пол читал лекцию у себя на родине, в Англии, в университете Уорвика. В ходе этой лекции он описал странные результаты, полученные нами[46]. Один из присутствующих на этой лекции, профессор Джордж Роуландз, сказал Полу, что на самом деле в этом результате нет ничего странного: это явление называется демпфированием Ландау[47] и стало известно физикам, изучающим свойства плазмы, еще около 45 лет назад.

вернуться

46

Steven H. Strogatz, Renato E. Mirollo, and Paul C. Matthews, “Coupled nonlinear oscillators below the synchronization threshold: Relaxation by generalized Landau damping,” Physical Review Letters 68 (1992), pp. 2730–2733.

вернуться

47

Lev Landau, “On the vibrations of the electronic plasma,” Journal of Physics USSR 10 (1946), pp. 25–34. (То же на русском языке: Л. Ландау, О колебаниях электронной плазмы // ЖЭТФ 16, 574 (1946).) Элементарное введение в демпфирование Ландау можно найти в статье David Sagan, “On the physics of Landau damping,” American Journal of Physics 62 (1994), pp. 450–462.

полную версию книги