Выбрать главу

При этом надо иметь в виду, что концентрированная (маловодная) перекись водорода - вязкая жидкость плотностью 1,45 т/м3. Вследствие своей вязкости она не очень-то хорошо течёт, например, в сопоставлении её течения с течением керосина. Кроме того, есть силы поверхностного натяжения, которые для каждой пары «жидкость - твёрдое тело» - свои, и которые определяют характер проникновения жидкости в микротрещины и трещины. В частности керосин проникает в микротрещины гораздо лучше, чем перекись, и потому подкрашенный керосин является одним из средств выявления микротрещин. Эти обстоятельства приводит ещё к одному вопросу.

Третий вопрос: достаточна ли технически возможная скорость истечения перекиси водорода и топлива из торпеды в случае нарушения герметичности её резервуаров и трубопроводов (вследствие микротрещин и неплотностей в соединениях топливной арматуры) для того, чтобы химические реакции реагентов, изливающихся из систем торпеды, породили взрывной характер нарастания давления в пространстве кольцевого зазора и полостях торпеды?

Из выступления В.Устинова неясно:

· ни какой минимальной мощности должен быть взрыв внутри аппарата для того, чтобы его разорвало на куски, разрушило его конструктивные элементы (заднюю крышку и т.п.), повредило прочный корпус и размещённое в нём оборудование;

· ни какое количество и каких именно компонентов топлива должно было излиться из торпеды для того, чтобы обеспечить необходимую мощность взрыва;

· ни сколько времени необходимо для того, чтобы из торпеды через неплотности соединений и микротрещины излилось необходимое количество реагентов;

· ни то, есть ли в самой торпеде или в аппарате достаточное свободное пространство, в котором достаточно быстро изливающиеся компоненты энергоносителей могли бы вместиться в необходимом количестве, смешаться и прореагировать между собой или с конструктивными элементами торпеды или аппарата так, чтобы произошёл взрыв;

· ни то, будет ли этот взрыв способен сразу разорвать торпедный аппарат на куски, разлетающиеся в разные стороны и разрушающие всё на пути своего полёта, либо он будет двухстадийным:

- на первой стадии он разрушит торпеду так, что из неё польётся, всё что есть, вследствие чего

- на второй стадии произойдёт взрыв необходимой для разрушений аппарата мощности;

· не ясно и то, способен ли такой двухстадийный взрыв на первой стадии выбить переднюю крышку аппарата, в результате чего вторая стадия взрыва с разрушением аппарата на куски может и не произойти, поскольку давление в аппарате будет сброшено при разрушении передней крышки, и он будет залит морской водой

[195].

Но как можно понять из реакции С.Прошкина на заявление Генеральной прокуратуры о технической первопричине гибели лодки, технически возможные утечки топлива и концентрированной перекиси водорода из торпеды 65-76 через микротрещины и неплотности соединений арматуры в топливной системе, не могут быть столь интенсивны, чтобы произошёл взрыв, мощность которого была бы достаточной для того, чтобы не то, что разорвать торпедный аппарат на куски и повредить прочный корпус, но и повредить торпеду так, чтобы произошёл второй взрыв, который разнесёт аппарат на куски и повредит прочный корпус.

Как прямо сказал С.Прошкин, у экипажа есть шесть часов на нейтрализацию аварийной торпеды, надо полагать, даже в случае самых интенсивных технически возможных утечек компонентов её энергоносителей.

Иначе говоря, для того, чтобы произошёл взрыв, способный разорвать торпедный аппарат на куски и повредить прочный корпус, торпеда должна быть повреждена каким-либо внешним воздействием. То есть, чтобы истечение энергоносителей из конструктивно разделённых резервуаров торпеды повлекло за собой взрывной характер нарастания в аппарате давления и температуры, на которые не успеют прореагировать системы обеспечения безопасности торпеды в аппарате и экипаж лодки, - необходимо, чтобы торпеда была сильно деформирована или разрушена: только в этом случае за короткое время через образовавшиеся разрывы в элементах её конструкции произойдёт излияние, смешение и химическая реакция компонентов её энергоносителей в таких количествах, что произойдёт взрыв, мощность которого достаточна для того, чтобы разорвать аппарат на куски, разрушить его конструктивные элементы, повредить прочный корпус и размещённое в нём оборудование.

Но торпедный аппарат проектируется так, чтобы он сам и его элементы не были источником такого рода факторов воздействия на торпеду. Более того, торпедный аппарат проектируется так, чтобы он был способен изолировать полностью или в течение некоторого достаточно продолжительного времени находящуюся в нём торпеду от воздействия такого рода внешних факторов. Причём в районе размещения торпедных аппаратов в междукорпусном пространстве лодки тоже нет ничего, что могло бы повредить торпедный аппарат. Но и при взгляде изнутри лодки в торпедном отсеке с исправным оборудованием тоже нет факторов, способных оказать столь разрушительное воздействие на ту часть торпедного аппарата, что находится внутри отсека.

Это означает, что если торпеда в аппарате повреждена внешним воздействием настолько, что из её конструктивно разделённых резервуаров потекло обильными струями топливо или окислитель, то к этому моменту повреждён лёгкий корпус и труба торпедного аппарата вне прочного корпуса как минимум сильно деформирована каким-то внешним воздействием и, вследствие этого вряд ли сохранила герметичность.

Соответственно механические повреждения трубы торпедного аппарата, вызванные внешним воздействием на него и локализованные вне прочного корпуса

[196], неизбежно должны были стать концентраторами напряжений в его конструкциях и соответственно - слабыми местами. Но не повреждённая в этом случае задняя крышка, находящаяся внутри прочного корпуса, имеющая специальные запоры (они должны выдерживать прохождение ударной волны при открытой передней крышке и заполнении забортной водой трубы аппарата), не могла стать самым слабым звеном достаточно сильно деформированного аппарата.

Однако и в этом случае при истечении компонент топлива в пространство кольцевого зазора, нарастание давления в аппарате в ходе химической реакции вряд ли бы носило взрывной характер, поскольку кольцевой зазор по своему объёму и геометрии - очень неэффективная «камеры сгорания». И это заставляет предположить, что при невзрывном характере нарастании давления повреждённый аппарат разорвало бы по уже имеющимся в его трубе разрывам и сгибам, полученным при его деформации под воздействием какого-либо внешнего по отношению к нему фактора (например, в случае столкновения с другим кораблём или подводным препятствием); или нарастание давления вышибло бы переднюю крышку, которая прижимается к своему опорному контуру большей частью забортным давлением и не имеет таких запоров, какими снабжена задняя крышка. Соответственно аварию торпеды, причиной которой стало внешнее механическое воздействие на торпедный аппарат, должны были выдержать задняя крышка с её запорами, и та часть трубы торпедного аппарата, что расположена внутри прочного корпуса.

Но если в районе торпедного аппарата происходит взрыв достаточно мощного противолодочного оружия, то аппарат неизбежно будет повреждён вместе с находящейся в нём торпедой воздействием осколков оружия и разлетающихся обломков корпуса, воздействием вспышки и ударной волны взрыва, а из повреждённой взрывом торпеды произойдёт обильное истечение компонентов её топлива практически в область вспышки взрыва.

Иными словами, и в версию о мощном взрыве компонентов энергоносителя практической торпеды, находящейся в аппарате, просится некий внешний взрыв, во вспышке которого почти мгновенно прореагировали и топливо, и окислитель практической торпеды “Курска”, усилив поражающее воздействие именно внешнего взрыва.