Выбрать главу

Рассмотрим такой мысленный эксперимент. Пусть в поле тяготения массивной черной дыры попадает корабль с космонавтами. Падая в черную дыру, он приближается к ее гравитационному радиусу. Для внешнего наблюдателя это длится бесконечно долго, для него корабль никогда не достигнет гравитационного радиуса. Но сами космонавты достигнут его за конечное (и притом весьма короткое!) время по своим собственным часам, измеряющим время в их собственной системе отсчета. Спрашивается, что будет с космонавтами после того, как корабль погрузится под гравитационный радиус? Если тело коллапсировало до бесконечной плотности, то, погрузившись под гравитационный радиус, корабль с космонавтами, в конце концов, достигнет области очень большой плотности и неизбежно погибнет. Однако существует возможность избежать этого. В некоторых случаях, например, когда коллапсирует электрически заряженное тело, сжатие останавливается под гравитационным радиусом задолго до достижения бесконечной плотности[302]. После этого начинается стадия расширения, тело выходит из-под гравитационного радиуса, и вместе с ним могут «вынырнуть» наши космонавты. Главная проблема в том, где они вынырнут? Ведь для внешнего наблюдателя время выхода из-под гравитационного радиуса, как и время погружения, бесконечно велико. Но если допустить, что существует множество пространственно-временных миров, множество «пространств», разделенных бесконечными временными интервалами, то космонавты могут вынырнуть в одном из таких миров — перед удивленным взором тамошних обитателей. Таким образом, заряженное коллапсирующее тело можно использовать в качестве «машины времени» для того, чтобы путешествовать в будущее. В области антиколлапса, где расширяющееся тело выходит из-под своего гравитационного радиуса («белая дыра»), цивилизация попадает в другой пространственно-временной мир и, пробыв в нем ровно столько, сколько ей нужно и интересно, она через черную дыру отправляется дальше, в следующий мир, путешествуя таким образом по бесконечному ансамблю миров[303]. Это будет путешествие без возвращения. Для того чтобы вернуться обратно, надо использовать топологические туннели (см. п. 1.15.3)— конечно, если они есть на самом деле.

Разумеется, приведенные здесь примеры дают лишь какое-то приблизительное представление о возможных путях парадоксальной эволюции. Истинное содержание ее может очень сильно отличаться от этих предполагаемых путей. Но может быть, все-таки некоторые черты эволюции угаданы здесь правильно?

Парадоксальная и посттехнологическая модели относятся к стохастической эволюции. Еще одним примером стохастической эволюции является космокреатика. Это модель эволюции, подразумевающая гипотетическую деятельность разума, направленную на фундаментальную перестройку структуры материального мира. Развитие космокреатики логично и неизбежно должно привести к автоэволюции разумной жизни, т. е. к целенаправленной перестройке самих разумных существ и эволюции коллективно! о разума КЦ. Мы обсудим эти модели в следующих пунктах. Три последние модели (парадоксальная эволюция, космокреатика и автоэволюция) Лесков объединяет в группу метанаучной эволюции. Это название подчеркивает, что указанные модели основаны на представлении о незавершенности современной научной парадигмы, которая отнюдь не венчает процесс познания, она лишь часть иерархически более высокой системы — метанауки; поэтому впереди нас ждут новые фундаментальные открытия, ведущие к радикальным изменениям естествознания и техники, и открывающие тем самым путь метанаучной эволюции. Отличительная особенность этой группы моделей состоит в том, что продолжительность соответствующих фаз развития КЦ может быть весьма значительной, соизмеримой с космологическим масштабом времени.

Упомянем еще о финалистских моделях (связанных с гибелью цивилизаций), которые Лесков также относит к стохастической эволюции. Они приводят к короткой шкале жизни КЦ — мы частично касались этой проблемы в п. 4.3.3, посвященном времени жизни коммуникативных цивилизаций. В результате анализа финалистских моделей Лесков приходит к выводу, что космические цивилизации обладают высокой устойчивостью по отношению к возмущающим факторам как внешнего, так и внутреннего происхождения. Это не означает, что гибель цивилизаций вообще невозможна, но вероятность такого исхода, как полагает Лесков, очень мала. Возможность предотвращения кризисных ситуаций, считает он, будет зависеть, в первую очередь, от уровня понимания проблемы, чувства ответственности и доброй воли разумных существ, образующих космическую цивилизацию и готовых отстоять свое будущее. При этом выход из потенциально опасных ситуаций КЦ будут искать, по всей вероятности, на пути интенсивного развития.

вернуться

302

На первый взгляд может показаться, что плотность вещества черной дыры (т. е. средняя плотность вещества под гравитационным радиусом) всегда очень велика, так что путешествовать там невозможно. Но на самом деле, это не так, все зависит от размеров черной дыры, точнее, от се массы. Гравитационный радиус равен 2GM/c2 Для массы Солнца это дает около 3 км, а для массы Земли около 1 см. Конечно, если сжать Солнце или Землю до таких размеров, мы действительно получим чудовищную плотность. Но обратим внимание, что с ростом массы гравитационный радиус увеличивается пропорционально М, следовательно, объем внутри черной дыры возрастает пропорционально М3, а средняя плотность вещества под гравитационным радиусом уменьшается как М-2. Для массы черной дыры, равной 108 М , гравитационный радиус равен приблизительно 2 а. е. (300 млн км), средняя плотность составляет 2 г/см3. Для М = 109 Мсредняя масса составляет 0,02 г/см3. Так что мы не случайно направили корабль к черной дыре очень большой массы.

вернуться

303

Более подробно идеи путешествия во времени излагаются в увлекательной книге И. Д. Новикова «Куда течет река времени?» — М.: Молодая гвардия, 1990.