Выбрать главу

5.5.2. Золотое отношение.

Модель Лефевра нашла подтверждение в многочисленных психологических тестах, в которых испытуемому предлагалось совершить тот или иной выбор. Она также позволила объяснить ряд психологических феноменов, в том числе результаты голосования на референдумах. Мы не будем останавливаться на этих экспериментах, читатель может познакомиться с ними по книге Лефевра. Рассмотрим в качестве иллюстрации случаи, когда в экспериментах появляется «золотое сечение».

Это относится к ситуациям, когда отсутствуют объективные данные для оценки величин х1 , х2. Примером может служить эксперимент Р. Зайонца. Студентам показывали узоры, напоминающие китайские иероглифы. При этом им говорилось, что это настоящие китайские прилагательные и предлагалось оценить степень позитивности каждого такого «прилагательного». Поскольку узоры на самом деле не были иероглифами, в них не содержится никакой объективной информации о китайских прилагательных. Это пример искусственной ситуации, когда объективная информация о величинах х1 , х2 отсутствует. Предлагались и другие эксперименты такого рода. Модель Лефевра в этом случае приводит к уравнению: Y12 + Y1 — 1 = 0. Решение его:

а это и есть знаменитое «золотое сечение» или «золотое отношение»[313].

Можно было бы ожидать, что в отсутствие объективной информации о величинах х1 , х2 субъект сделает выбор каждой из двух возможностей (0 или 1) с вероятностью, равной ½. Но модель в согласии с экспериментом показывает, что это не так: субъект делает асимметричный выбор. Одна из альтернатив выбирается с вероятностью 0,618, другая — с вероятностью 1 — 0,618 = 0,372. Число 0,62, как устойчивое значение частоты выбора, появлялось в ряде психологических экспериментов. Однако почему это так, оставалось не ясным. Некоторые авторы догадывались и выдвигали гипотезу, что точное значение частоты должно равняться золотому отношению 0,618.... Модель Лефевра доказывает это теоретически.

Примером более сложной ситуации, когда также появляется «золотое отношение», является «задача о разрезании пирога». Представим себе, что имеется пирог прямоугольной формы. Субъект должен разрезать его на две (равные или неравные) части и одну из них взять себе. Предполагается, что желание взять ту или иную часть пирога пропорционально ее длине. А социальный статус, напротив, обратно пропорционален длине взятого куска: чем больший кусок субъект забирает себе, тем хуже он будет выглядеть в глазах окружающих. И, напротив, чем больший кусок он оставит другим, тем выше его будут оценивать. Требуется определить, с какой вероятностью субъект возьмет себе меньшую (или большую) часть. Оказывается модель позволяет не только решить эту задачу, но даст еще дополнительные сведения о том, на какие именно части будет разрезан пирог. Модель дает два решения. Первое достаточно одиозное: субъект забирает себе весь пирог с вероятностью 1. Второе решение более интересное: субъект разрезает пирог в отношении «золотого сечения» 0,618 и берет себе большую часть с вероятностью 0,618.

5.5.3. Саморефлексирующий субъект.

Основная трудность в изучении психологии субъекта, как подчеркивает Лефевр, состоит в том, что его внутренний, субъективный мир полностью недоступен наблюдателю. Единственное, что можно наблюдать — это поведение субъекта, которое зависит как от его внутреннего состояния, так и от влияния окружающего мира. Можно ли на основе поведения субъекта судить о его внутреннем состоянии? Путь к этому лежит через изучение процесса саморефлексии, т. е. осознания субъектом своего поведения. Что значит, что субъект осознает свое поведение? Пусть готовность субъекта сделать позитивный выбор равна Y1; свое поведение, не просто готов сделать этот выбор, но он знает, что он готов сделать его. А раз это так, значит субъект имеет некий образ себя. Причем этот образ, в каком-то смысле, должен быть правильным. Ведь если субъект имеет неправильный образ себя, то трудно говорить о том, что он осознает свое поведение. В процессе последовательной рефлексии образ себя также осознает свое поведение. Следовательно, у него появляется свой образ себя. Этот вторичный образ себя Лефевр называет моделью себя (см. рис. 5.5.1). Задача состоит в том, чтобы на основе поведения субъекта извлечь информацию о его внутреннем мире или, как говорит Лефевр, о его ментальной сфере. Согласно Лефевру, это можно сделать посредством математического анализа функции, описывающей поведение субъекта.

вернуться

313

«Золотое сечение» или «золотое отношение» связано с делением отрезка АВ на две части таким образом, »по большая его часть А С является средней пропорциональной между всем отрезком АВ и его меньшей частью ВС. Иными словами, длина отрезка так относится к его большей части, как большая часть относится к меньшей: АВ : АС = АС : СВ. Алгебраически золотое сечение сводится к решению уравнения 1 : x = x : (1 — x). Откуда x = (√5 - 1 )/2 ≈ 0,618. Иногда «золотое отношение» вводится с помощью чисел Фибоначчи. Так называется последовательность 1, 1, 2, 3, 5, 8,..., в которой каждый последующий член равен сумме двух предыдущих. Если взять отношение двух соседних членов ряда Фибоначчи un/un+1 ,то при n >> 1 это отношение сходится к золотому сечению. Золотое сечение с древнейших времен считается символом гармонии, символом совершенного и прекрасного. Оно широко используется в живописи, архитектуре. В последнее время золотое сечение все чаще находят не только в искусстве, но и в природе.