В нашей стране любительский (в основном, учебный) проект «Аэлита» выполнялся с конца 1980-х годов Л. Н. Филипповой во Всероссийском пионерском лагере «Орленок» (ныне РДЦ «Орленок») на берегу Черного моря. Использовалась 3-метровая антенна солнечного радиотелескопа, переданная «Орленку» Специальной астрофизической обсерваторией и приемная аппаратура разработанная специалистами Института радиофизики и электроники Академии наук Армении.
Рис. 1.9.10. Любительский проект «Аэлита»
В связи с широким интересом к проблеме SETI в США в 1994 г. была основана Лига SETI (SETI League) как всемирная организация, объединяющая любителей астрономии, радиолюбителей, профессиональных радиоастрономов, специалистов по цифровой обработке сигналов — с целью систематического научного изучения и поиска внеземной жизни. Основной экспериментальный проект Лиги «Аргус» рассчитан на поиск сигналов с помощью небольших 5-метровых антенн, объединенных в единую сеть. SETI Лига имеет свой сайт в Интернете: http://www.setileague.org/, где представлена разнообразная и весьма богатая информация о ее деятельности и о проблеме SETI.
Еще один интересный любительский проект носит название «SETI дома» (SETI@HOME). Большой объем информации, поступающей в ходе поиска сигналов, весьма остро ставит проблему обработки. Проект SETI@HOME позволяет с помощью Internet подключить миллионы домашних компьютеров к обработке данных. Таким образом, каждый желающий может принять участие в поиске внеземных цивилизаций, не выходя из дома. Для того чтобы стать участником проекта, надо всего лишь «скачать» и установить на своем домашнем компьютере программу-скринсайвер, которая запускается в тот момент, когда вы перестаете работать за компьютером. Программа сама «перекачивает» необработанную информацию из Научного центра, обрабатывает ее, и отсылает обратно полученные результаты.
Проект «SETI@HOME» базируется в Калифорнийском университете в Беркли. Англоязычный сайт проекта расположен по адресу: setiathome.ssl.berkeley.edu.
В России число добровольных участников проекта пока невелико, мы занимаем по числу участников 33-е место в мире. Чтобы исправить положение И. Галявов создал русскоязычный сайт, где можно найти много интересной информации как о проекте, так и о SETI.
1.10. Оптический канал связи
До сих пор мы рассматривали возможности и попытки обнаружения радиосигналов ВЦ. Это вполне естественно, поскольку радиосвязь является основным средством коммуникаций на Земле, и поскольку, начиная с пионерских работ Дж. Коккони, Ф. Моррисона и Ф. Дрейка, было показано, что радиоволны СВЧ-диапазона могут обеспечить связь на межзвездные расстояния. А возможны ли иные способы связи с ВЦ?
В XIX в., когда радиоволны еще не были известны, рассматривались проекты световой сигнализации на планеты Солнечной системы. Наиболее серьезный проект был предложен Э. Неовиусом, российским ученым финского происхождения[47]. Неовиус предложил поместить в фокусе оптического телескопа яркий источник света и с помощью специальной подвижной диафрагмы с вырезами модулировать световой поток в виде «точек» и «тире» азбуки Морзе. В качестве источника света он предлагал использовать недавно изобретенную вольтову дугу. Располагая ее в фокусе телескопа с диаметром объектива в 1 м, можно было создать сигнал вполне обнаружимый на поверхности Марса с помощью аналогичного телескопа. Для создания обнаружимого сигнала на более удаленных планетах Неовиус предлагал использовать систему из нескольких 1-метровых телескопов. Он прекрасно понимал, что создание такой системы не под силу одной какой-либо стране и предлагал объединить усилия многих передовых стран, рассматривая задачу связи с внеземными цивилизациями как общечеловеческую. Проект Неовиуса был рассчитан на связь в пределах Солнечной системы. А возможна ли связь с помощью световых сигналов на межзвездные расстояния? До изобретения лазеров мы должны были бы ответить отрицательно.
На первый взгляд, это может показаться не совсем ясным. Если мы помещаем радиопередатчик в фокусе зеркальной антенны и таким образом создаем луч, который можно направить на различные звезды, получая при этом вполне обнаружимый сигнал, — то почему бы ни поместить источник света в фокусе оптического зеркала и с помощью такого прожектора не попробовать передавать световые сигналы? Различие между радиотелескопом и прожектором состоит в том, что радиотелескоп обладает гораздо большей направленностью. Это связано с тем, что излучатель радиоволн, находящийся в фокусе зеркальной антенны, имеет размер, не превышающий длину волны радиоизлучения, поэтому раствор радиолуча определяется только дифракцией и равен λ/D. Длина волны видимого света столь мала, что невозможно создать источник такой протяженности. Пламя вольтовой дуги или нить накаливания имеют размер порядка сантиметров, а длина волны видимого спектра меньше 1 мкм. При таких условиях расходимость луча прожектора значительно больше дифракционного предела. Хороший прожектор имеет расходимость луча порядка полградуса. Такую же диаграмму направленности будет иметь радиотелескоп диаметром 1 м, работающий на волне 1 см. Это довольно низкая направленность. Чтобы обеспечить радиосвязь на межзвездные расстояния, требуется гораздо более высокая направленность. Тем более это необходимо для светового сигнала. Ведь условия обнаружения светового сигнала гораздо хуже, чем радиосигнала. Это связано с необходимостью выделения сигнала на фоне излучения звезды.