Выбрать главу

Если цивилизация, посылающая радио или световые сигналы, находится в окрестности какой-то звезды (на планете, обращающейся вокруг этой звезды), то при наблюдении ее даже с расстояния ближайших звезд (а тем более с дальних расстояний) излучение цивилизации невозможно отделить от излучения звезды: практически они будут наблюдаться в одном направлении. Значит, сигнал ВЦ должен быть обнаружен на фоне излучения звезды. Мощность излучения нормальной звезды, типа Солнца, в радиодиапазоне низка, поэтому обнаружение радиосигналов на фоне этого излучения не представляет труда. Ограничивающим фактором здесь является не излучение звезды, а галактический фон. Если радиосигнал можно обнаружить на фоне галактического излучения, он «автоматически» выделяется из излучения звезды. Иное дело в оптическом диапазоне. Здесь интенсивность излучения звезды гораздо выше, и именно она, а не галактический фон, ограничивает возможность обнаружения сигнала. Чтобы световой сигнал можно было обнаружить на фоне яркого излучения звезды, направленность светового пучка должна быть очень острой, значительно острее, чем в радиодиапазоне. В то время как световой прожектор дает очень низкую направленность. Изобретение лазеров позволило снять это противоречие.

Принцип работы лазера такой же, как у мазера (рассмотренного в § 1.8). Он является источником вынужденного когерентного излучения, в котором все фотоны данной длины волны летят в одном направлении. Конечно, это условие выполняется не абсолютно, а с определенной точностью: поскольку излучение лазера но всей его поверхности синфазно, то угловая ширина светового луча определяется дифракцией и равна λ/a, где а — линейный размер излучающей поверхности. А так как длина волны видимого света очень мала, то и расходимость пучка лазера, даже при небольшом размере светящейся поверхности, невелика. Так, для λ = 5000 Å при а = 1 см, расходимость пучка составляет 5 • 10-5 рад или 10 секунд дуги, что сопоставимо с направленностью радиотелескопа диаметром 200 м, работающего на волне 1 см. Это уже достаточно высокая направленность. Однако с помощью оптической системы се можно еще увеличить. Поместим в пучок лазера идеальную линзу диаметром а с фокусным расстоянием, равным тоже а. Тогда в фокусе линзы будет получено действительное изображение размером λ. То есть такая система позволяет получить источник света, имеющий размер, равный длине волны (как излучатель в радиодиапазоне). Если теперь совместить фокус линзы с фокусом большого зеркала, диаметром D, то пучок, выходящий из большого зеркала, будет иметь расходимость λ/D. Для 5-метрового зеркала она составляет 10-7 рад или 0,02 угловой секунды. Это соответствует очень высокой направленности: телесный угол, в котором сосредоточено излучение, равен 10-14 стерадиана. (Чтобы реализовать такую направленность в радиодиапазоне, надо иметь гигантский радиотелескоп; если, например, радиотелескоп работает в диапазоне 20 см, где расположены радиолинии водорода и гидроксила, его размер должен быть 2000 км!) Столь высокая направленность лазера позволяет осуществить передачу световых сигналов на межзвездные расстояния.

Первые, кто обратил внимание на возможность использования лазеров для межзвездной связи, были американские ученые Р. Шварц и Ч. Таунс. Их статья в «Nature» на эту тему[48] появилась в 1961 г., спустя год после первых попыток поиска радиосигналов ВЦ (проект «Озма»). Таунс является одним из изобретателей лазера, вместе с советскими учеными Н. Г. Басовым и А. М. Прохоровым он был удостоен Нобелевской премии за это изобретение. Не удивительно по этому, что именно Таунс исследовал возможности применения лазеров для связи между космическими цивилизациями.

вернуться

48

См. Шварц Р., Таунс Ч. Межзвездная и межпланетная связь при помощи оптических мазеров / Межзвездная связь. — М.: Мир, 1965. С. 247-256.