Выбрать главу

Забудем на время о радиоэхо. Рассмотрим ближайшие к нам галактики и выберем из них семь-восемь ярчайших: Туманность Андромеды, Двингело 1, Туманность Треугольника и т. д. Упорядочим их по звездным величинам и построим фигуры аналогично тому, как это делалось для звезд, сопоставляемых с задержками эха. Оказывается, в экваториальной системе координат получается фигура, аналогичная конфигурации Паскаля. Определенные «конфигурационные свойства» и их инвариантность относительно преобразований координат имеют место и для ближайших ярких массивных звезд. Какова природа этих конфигураций? Можно ли придать им некий динамический смысл?

Файзуллин рассмотрел так называемую задачу Штейнера: заданы N точек на плоскости или в пространстве; необходимо соединить их отрезками прямых так, чтобы сумма длин этих отрезков была минимальна. При этом можно вводить дополнительные точки, кроме тех, которые заданы. Файзуллина интересовал механический аналог этой задачи, когда минимум длины интерпретируется как некий «экстремальный энергетический принцип» для гравитирующей механической системы. Это позвонило решать некоторые динамические задачи, относящиеся к звездной динамике. Результаты Файзуллин опубликовал в ряде специальных статей и в докладах на конференциях, где он ни словом не упоминал о проблем LDE, ему важно было получить апробацию результатов о «конфигурационных свойствах» в системах звезд и галактик. Эти публикации и выступления вызвали острую дискуссию в части, касающейся попыток автора дать динамическую интерпретацию обнаруженным конфигурациям, но сам факт наличия таких инвариантных конфигураций был признан (как пишет сам Файзуллин, «скрипя сердце»).

Здесь мы подходим к одному из принципов, которому, по мнению Файзуллина, должны удовлетворять любые попытки (гипотезы) интерпретировать задержки радиоэха как контакт с ВЦ: «результаты должны пройти стандартную научную апробацию в виде выступлений на конференциях и в виде опубликованных научных статей (без упоминаний или ссылок на проблему SETI), что должно подтвердить независимую от гипотезы Контакта значимость выявленных математических и физических фактов». Конечно, такая процедура затягивает решение вопроса. «Дешифровка сигнала» перестает быть одномоментным событием. Надо сказать, что близкую мысль высказывали ранее Рудольф Пешек и Джон Билленгем в докладе на конференции ООН по исследованию и использованию космического пространства в мирных целях (Юниспейс-82). Касаясь содержания информации и процедуры ее дешифровки, они писали: «Информация, содержащаяся в сигналах другой цивилизации, может быть достаточно богатой, и тогда на ее изучение уйдут десятилетия, а то и жизнь нескольких поколений. Тогда новости в этой области будут обсуждаться скорее на страницах научных книг и в университетских аудиториях, чем на страницах ежедневной печати»[85].

Вернемся к LDE. Интерпретация задержек по методу Файзуллина привела к определенным математическим конфигурациям, которые не могут получиться при случайном переборе чисел. Дальнейшее изучение показало, что сходные конфигурации наблюдаются в упорядоченных системах звезд и галактик и, вероятно, отражают какие-то природные закономерности, происхождение которых пока неясно. Не может ли Послание зонда намеренно указывать на эти математические закономерности, чтобы подчеркнуть искусственный характер сигнала. Как отмечает Файзуллин, по идее это перекликается с предложением Гаусса о построении фигуры, иллюстрирующей теорему Пифагора (см. Введение).

Принимая искусственную интерпретацию задержек, можно ли определить местоположение зонда? Файзуллин предпринял такую попытку, в определенной мере отступив от принятой им строгой методологии. Он обращает внимание на то, что большинство задержек и в двадцатые (1920-е) годы и в более поздних экспериментах Кроуфорда равнялось восьми. Задержке 8 отвечает звезда Процион. Если взять последовательность Штермера, которую использовал Лунен для определения местоположения зонда, то, следуя процедуре Файзуллина, мы получим фигуру из треугольников с общей вершиной в точке, отвечающей расположению Проциона. Файзуллин приводит и другие аргументы, указывающие на Процион, на которых мы останавливаться не будем. Читатель может познакомиться с ними в цитированной выше статье (см. сноску 84).

вернуться

85

SETI: состояние и перспективы // Земля и Вселенная. 1984. № 2. С. 90-93.