Насколько короче и проще будут рассуждения, можно показать на следующем примере. Требуется, скажем, определить влияние изменения величины стоимости двух товаров – холста и сюртука на относительное выражение величины стоимости одного из них – холста.[168]
Пусть – стоимость холста,
– стоимость сюртука. Переменные
и
будут обозначать вступающие в обмен друг с другом количества холста и сюртука соответственно. Так как обмен производят по стоимости, должно быть
, откуда
Но есть не что иное, как относительное выражение стоимости холста.
В полученном нами выражении искомая величина предстала в виде функции величины стоимости холста и сюртука. Поскольку удалось найти конкретный вид этой функции, то тем самым мы имеем запись всей информации о влиянии изменения стоимости холста и сюртука на относительное выражение стоимости холста. Извлечь эту информацию может каждый, знакомый со школьным курсом исследования элементарных математических функций.
Под влиянием математики экономические высказывания будут становиться все более строгими. Прежде всего это относится, конечно, к высказываниям о количественных зависимостях. Экономисты не будут, например, говорить: прямо пропорциональная зависимость, когда захотят выразить зависимость прямую (т. е. когда захотят указать лишь на увеличение зависимой переменной по мере увеличения независимой, не зная или не желая указывать конкретного вида этой зависимости). Но проникновение математики в политическую экономию потребует строгости и от словесных рассуждений и высказываний.
Примером нестрогого высказывания служит следующее. Желая выразить ту мысль, что нужно в интересах общества стремиться при меньших затратах достигнуть больших результатов, некоторые экономисты говорят: «Нужно добиться максимума результатов при минимуме затрат». Минимум затрат, как известно, нуль. При нулевых затратах получить что-либо невозможно. По буквальному смыслу высказывания выходит, что предлагается произвести что-либо, ничего не затрачивая. Употребление безо всякой надобности математических терминов «максимум» и «минимум» до неузнаваемости исказило смысл содержательной экономически идеи.
Математика может отточить, сделать определеннее понятия и высказывания. Как пишет Б. Селигмен, «мы раньше учимся ходить, а потом уже бегаем. С помощью технических приемов оттачиваются идеи и понятия, а это наверняка важно и ценно».[169]
Применение математики послужит толчком к более глубокому изучению количественных связей и зависимостей. Математика после каждого слова «зависит» приучает ставить вопрос: как? «Во всяком случае, – пишет И. Г. Блюмин, – экономист, дающий математическое выражение тому или иному положению, должен предварительно выяснить, имеет ли он дело с переменной или с постоянной величиной; если с переменной, то должна ли она рассматриваться как переменная независимая или как функция: если как функция, то зависит ли от одной переменной или от нескольких; если от нескольких переменных, то являются ли они независимыми или нет; является ли эта функция прерывистой или непрерывной; т. е. самый процесс математического оформления экономических данных толкает мысль экономиста на выяснение таких вопросов, мимо которых он обычно прошел бы».[170]
Поскольку в настоящее время много математических по существу своему задач решается кустарно, в экономических работах встречается немало ошибок, тоже по существу математических. Сознательное применение математики, позволяющее легко проверить соблюдение формальных правил вывода, будет способствовать устранению из экономической теории ошибок математического порядка. Наиболее распространенными из них можно назвать две. Первая заключается в следующем. Многие экономисты полагают, что одно лишь условие расширенного воспроизводства влечет за собой действие закона опережающего роста первого подразделения по сравнению со вторым.[171] Вторая сводится к представлению, что если производительность труда будет расти медленнее заработной платы, то обязательно величина совокупного общественного продукта за вычетом необходимого будет уменьшаться.[172]
171
По поводу этой ошибки см.: Довгань Л. И. О темпах роста двух подразделений общественного производства. М., 1965. – В указании на эту ошибку состоит заслуга Л. И. Довганя. Но наряду с исправлением ошибки математической он сделал ошибку экономическую: из того, что математически возможно такое соотношение между экономическими параметрами, удовлетворяющими условию реализации, при котором второе подразделение опережает первое, Л. И. Довгань сделал вывод об отсутствии экономического закона об опережении первым подразделением второго. Но для этого вывода мало сказать, что при некоторых математически возможных соотношениях параметров второе подразделение будет опережать первое. Надо доказать экономическим исследованием, что такие соотношения необходимо устанавливаются в экономической действительности.
172
Доказательство того, что такое представление ошибочно, см. в главе II (соотношение производительности труда и его оплаты).